A key competence for open-ended learning is the formation of increasingly abstract representations useful for driving complex behavior. Abstract representations ignore specific details and facilitate generalization. Here we consider the learning of abstract representations in a multi-modal setting with two or more input modalities. We treat the problem as a lossy compression problem and show that generic lossy compression of multimodal sensory input naturally extracts abstract representations that tend to strip away modalitiy specific details and preferentially retain information that is shared across the different modalities. Furthermore, we propose an architecture to learn abstract representations by identifying and retaining only the information that is shared across multiple modalities while discarding any modality specific information.
翻译:开放式学习的一个关键能力是形成对推动复杂行为有用的日益抽象的表述方式。抽象表述方式忽略了具体细节,并促进了概括化。在这里,我们考虑在具有两种或两种以上投入模式的多模式环境下学习抽象表述方式。我们将此问题视为一个损失压缩问题,并表明对多式联运感官投入的一般损失压缩自然会产生抽象表述方式,这种表述方式往往会剥离模式性的具体细节,并优先保留不同模式共享的信息。此外,我们建议建立一个架构,通过识别和保留不同模式共享的信息,同时放弃任何模式特定信息,学习抽象表述方式。