Deep models have been widely and successfully used in image manipulation detection, which aims to classify tampered images and localize tampered regions. Most existing methods mainly focus on extracting global features from tampered images, while neglecting the relationships of local features between tampered and authentic regions within a single tampered image. To exploit such spatial relationships, we propose Proposal Contrastive Learning (PCL) for effective image manipulation detection. Our PCL consists of a two-stream architecture by extracting two types of global features from RGB and noise views respectively. To further improve the discriminative power, we exploit the relationships of local features through a proxy proposal contrastive learning task by attracting/repelling proposal-based positive/negative sample pairs. Moreover, we show that our PCL can be easily adapted to unlabeled data in practice, which can reduce manual labeling costs and promote more generalizable features. Extensive experiments among several standard datasets demonstrate that our PCL can be a general module to obtain consistent improvement. The code is available at https://github.com/Sandy-Zeng/PCL.


翻译:在图像操纵探测中,广泛和成功地使用了深层模型,目的是对被篡改的图像进行分类,并使被篡改的区域本地化;大多数现有方法主要侧重于从被篡改的图像中提取全球特征,同时忽视被篡改的和真实的区域在被篡改的图像中之间的当地特征关系;为了利用这种空间关系,我们提议提议采用差异性学习(PCL),以便有效地探测图像篡改。我们的PCL由双流结构组成,分别从 RGB 和噪音观点中提取两种类型的全球特征。为了进一步改善歧视力量,我们通过代理建议对比性学习任务利用地方特征之间的关系,通过吸引/复制基于建议的积极/负式样本组合。此外,我们表明我们的PCL可以很容易地在实际中适应未加标签的数据,这可以减少人工标签的成本,促进更通用的特征。几个标准数据集之间的广泛实验表明,我们的PCL可以是一个获得一致改进的一般模块。该代码可在https://github.com/Sandy-Zeng/PCL上查阅。

0
下载
关闭预览

相关内容

专知会员服务
60+阅读 · 2020年3月19日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Multi-Task Learning的几篇综述文章
深度学习自然语言处理
15+阅读 · 2020年6月15日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
Arxiv
13+阅读 · 2021年3月3日
Arxiv
31+阅读 · 2020年9月21日
Adversarial Mutual Information for Text Generation
Arxiv
13+阅读 · 2020年6月30日
Arxiv
13+阅读 · 2019年11月14日
Arxiv
12+阅读 · 2019年4月9日
VIP会员
相关VIP内容
专知会员服务
60+阅读 · 2020年3月19日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Multi-Task Learning的几篇综述文章
深度学习自然语言处理
15+阅读 · 2020年6月15日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
相关基金
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员