Segmentation is a key analysis tasks in biomedical imaging. Given the many different experimental settings in this field, the lack of generalization limits the use of deep learning in practice. Domain adaptation is a promising remedy: it trains a model for a given task on a source dataset with labels and adapts it to a target dataset without additional labels. We introduce a probabilistic domain adaptation method, building on self-training approaches and the Probabilistic UNet. We use the latter to sample multiple segmentation hypothesis to implement better pseudo-label filtering. We further study joint and separate source-target training strategies and evaluate our method on three challenging domain adaptation tasks for biomedical segmentation.
翻译:医学图像分割的概率域适应
分割是生物医学成像的关键分析任务。在这个领域中存在许多不同的实验设置,缺乏泛化性限制了实用深度学习的应用。域适应是一种有希望的解决方法,它在具有标签的源数据集上训练给定任务的模型,并将其适应到目标数据集上,无需额外的标签。我们介绍了一种概率域适应方法,它建立在自训练方法和 Probabilistic UNet 的基础上。我们使用后者来采样多个分割假设,以实现更好的伪标签过滤。我们进一步研究了联合和分开的源-目标训练策略,并在三个具有挑战性的医学分割域适应任务上评估了我们的方法。