Optimization is a ubiquitous modeling tool and is often deployed in settings which repeatedly solve similar instances of the same problem. Amortized optimization methods use learning to predict the solutions to problems in these settings. This leverages the shared structure between similar problem instances. In this tutorial, we will discuss the key design choices behind amortized optimization, roughly categorizing 1) models into fully-amortized and semi-amortized approaches, and 2) learning methods into regression-based and objective-based. We then view existing applications through these foundations to draw connections between them, including for manifold optimization, variational inference, sparse coding, meta-learning, control, reinforcement learning, convex optimization, and deep equilibrium networks. This framing enables us easily see, for example, that the amortized inference in variational autoencoders is conceptually identical to value gradients in control and reinforcement learning as they both use fully-amortized models with an objective-based loss. The source code for this tutorial is available at https://www.github.com/facebookresearch/amortized-optimization-tutorial


翻译:优化是一种无处不在的建模工具,常常被部署在反复解决相同问题类似实例的环境下。 摊销优化方法使用学习来预测这些环境中的问题解决方案。 这在类似问题实例之间牵动了共同的结构。 在这个教义中, 我们将讨论摊销优化背后的关键设计选择, 大致将1个模型分为完全摊销和半摊销方法, 2) 学习方法分为基于回归和客观的学习方法。 然后我们通过这些基础查看现有的应用程序, 以在它们之间建立联系, 包括多重优化、 变异感应、 分散的连结、 元学习、 控制、 强化学习、 共振动优化和深平衡网络。 这个框架让我们很容易看到, 例如, 变异自动电解器中的振动在概念上与控制和加强学习过程中使用的基于客观损失的完全摊销模型在概念上相同。 此教学的源代码可以在 https://www.github.com/facebookreearsear-amortimatimation-imationtalational https://www. asketrodustrain- amtialization- exear- exear.com/ amtiont

1
下载
关闭预览

相关内容

100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
167+阅读 · 2020年3月18日
深度强化学习策略梯度教程,53页ppt
专知会员服务
184+阅读 · 2020年2月1日
强化学习最新教程,17页pdf
专知会员服务
182+阅读 · 2019年10月11日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
5+阅读 · 2015年7月12日
国家自然科学基金
16+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
6+阅读 · 2008年12月31日
Arxiv
12+阅读 · 2019年3月14日
Arxiv
18+阅读 · 2019年1月16日
VIP会员
相关VIP内容
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
167+阅读 · 2020年3月18日
深度强化学习策略梯度教程,53页ppt
专知会员服务
184+阅读 · 2020年2月1日
强化学习最新教程,17页pdf
专知会员服务
182+阅读 · 2019年10月11日
相关资讯
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
相关基金
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
5+阅读 · 2015年7月12日
国家自然科学基金
16+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
6+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员