In this work we explored the use of patient specific reinforced learning to generate 3D activity maps from two 2D planar images (anterior and posterior). The solution of this problem remains unachievable using conventional methodologies and is of particular interest for dosimetry in nuclear medicine where approaches for post-therapy distribution of radiopharmaceuticals such as 177Lu-PSMA are typically done via either expensive and long 3D SPECT acquisitions or fast, yet only 2D, planar scintigraphy. Being able to generate 3D activity maps from planar scintigraphy opens the gate for new dosimetry applications removing the need for SPECT and facilitating multi-time point dosimetry studies. Our solution comprises the generation of a patient specific dataset with possible 3D uptake maps of the radiopharmaceuticals withing the anatomy of the individual followed by an AI approach (we explored both the use of 3DUnet and diffusion models) able to generate 3D activity maps from 2D planar images. We have validated our method both in simulation and real planar acquisitions. We observed enhanced results using patient specific reinforcement learning (~20% reduction on MAE and ~5% increase in SSIM) and better organ delineation and patient anatomy especially when combining diffusion models with patient specific training yielding a SSIM=0.89 compared to the ground truth for simulations and 0.73 when compared to a SPECT acquisition performed half an hour after the planar. We believe that our methodology can set a change of paradigm for nuclear medicine dosimetry allowing for 3D quantification using only planar scintigraphy without the need of expensive and time-consuming SPECT leveraging the pre-therapy information of the patients.
翻译:本研究探索了利用患者特异性强化学习从两张二维平面图像(前位与后位)生成三维活度分布图的方法。该问题的解决在传统方法中仍无法实现,对于核医学剂量学(例如¹⁷⁷Lu-PSMA等放射性药物治疗后分布评估)具有特殊意义,因为现有方法通常依赖昂贵且耗时的三维SPECT采集,或仅能获取快速但限于二维的平面闪烁扫描。从平面闪烁扫描生成三维活度分布图将为剂量学应用开辟新途径,既能免除SPECT需求,又可促进多时间点剂量学研究。我们的解决方案包括:首先生成包含患者解剖结构内放射性药物可能三维摄取分布的患者特异性数据集,随后采用人工智能方法(我们探索了3DUnet与扩散模型)从二维平面图像生成三维活度分布图。我们在模拟数据与真实平面采集数据中均验证了该方法。使用患者特异性强化学习获得了显著提升的效果(MAE降低约20%,SSIM提升约5%),并结合扩散模型与患者特异性训练实现了更优的器官勾画与解剖结构还原——模拟数据与金标准对比SSIM达0.89,与平面扫描半小时后采集的SPECT数据对比SSIM达0.73。我们相信该方法能推动核医学剂量学的范式变革,仅通过平面闪烁扫描即可实现三维定量分析,无需依赖昂贵耗时的SPECT设备,同时充分利用患者的治疗前信息。