In this work we explored the use of patient specific reinforced learning to generate 3D activity maps from two 2D planar images (anterior and posterior). The solution of this problem remains unachievable using conventional methodologies and is of particular interest for dosimetry in nuclear medicine where approaches for post-therapy distribution of radiopharmaceuticals such as 177Lu-PSMA are typically done via either expensive and long 3D SPECT acquisitions or fast, yet only 2D, planar scintigraphy. Being able to generate 3D activity maps from planar scintigraphy opens the gate for new dosimetry applications removing the need for SPECT and facilitating multi-time point dosimetry studies. Our solution comprises the generation of a patient specific dataset with possible 3D uptake maps of the radiopharmaceuticals withing the anatomy of the individual followed by an AI approach (we explored both the use of 3DUnet and diffusion models) able to generate 3D activity maps from 2D planar images. We have validated our method both in simulation and real planar acquisitions. We observed enhanced results using patient specific reinforcement learning (~20% reduction on MAE and ~5% increase in SSIM) and better organ delineation and patient anatomy especially when combining diffusion models with patient specific training yielding a SSIM=0.89 compared to the ground truth for simulations and 0.73 when compared to a SPECT acquisition performed half an hour after the planar. We believe that our methodology can set a change of paradigm for nuclear medicine dosimetry allowing for 3D quantification using only planar scintigraphy without the need of expensive and time-consuming SPECT leveraging the pre-therapy information of the patients.
翻译:暂无翻译