In this paper we consider a local service-requirement assignment problem named exact capacitated domination from an algorithmic point of view. This problem aims to find a solution (a Nash equilibrium) to a game-theoretic model of public good provision. In the problem we are given a capacitated graph, a graph with a parameter defined on each vertex that is interpreted as the capacity of that vertex. The objective is to find a DP-Nash subgraph: a spanning bipartite subgraph with partite sets D and P, called the D-set and P-set respectively, such that no vertex in P is isolated and that each vertex in D is adjacent to a number of vertices equal to its capacity. We show that whether a capacitated graph has a unique DP-Nash subgraph can be decided in polynomial time. However, we also show that the nearby problem of deciding whether a capacitated graph has a unique D-set is co-NP-complete.
翻译:在本文中, 我们考虑一个本地服务需求分配问题, 从算法角度命名为精密的功能控制。 这个问题旨在找到一个解决方案( 纳什均衡), 解决公益提供游戏理论模型。 在给我们一个问题中, 给我们提供一个功能化的图形, 一个在每一个顶点上定义参数的图表, 并被解释为该顶点的能力。 目标是找到一个 DP- Nash 子谱: 一个包含Partite 数据集 D 和 P 的双面分集, 分别称为 D- set 和 P 集, 从而在 P 中没有孤立的顶点, 并且 D 中的每个顶点与若干顶点相邻, 与它的能力相等。 我们显示一个功能化的图形是否有独特的 DP- Nash 子图可以在聚名时决定。 然而, 我们还显示, 附近决定一个功能化的图形是否具有独特的 D- set- set 的问题, 是共同- NP- 完整的 。