Pomset logic and BV are both logics that extend multiplicative linear logic (with Mix) with a third connective that is self-dual and non-commutative. Whereas pomset logic originates from the study of coherence spaces and proof nets, BV originates from the study of series-parallel orders, cographs, and proof systems. Both logics enjoy a cut-admissibility result, but for neither logic can this be done in the sequent calculus. Provability in pomset logic can be checked via a proof net correctness criterion and in BV via a deep inference proof system. It has long been conjectured that these two logics are the same. In this paper we show that this conjecture is false. We also investigate the complexity of the two logics, exhibiting a huge gap between the two. Whereas provability in BV is NP-complete, provability in pomset logic is $\Sigma_2^p$-complete. We also make some observations with respect to possible sequent systems for the two logics.
翻译:紫外线逻辑和BV都是扩展多种复制线性逻辑(与 Mix ) 的逻辑, 第三个连接逻辑是自成一体和非互不相容的。 孔塞逻辑源于对一致性空间和验证网的研究, 而 BV 则源于对序列平行命令、 cophors 和 验证系统的研究。 这两种逻辑都具有截取可接受性, 但两个逻辑都无法在序列计算中完成。 孔塞逻辑的可变性可以通过证明净正确性标准进行检查, BV 则通过深度推断验证系统进行检查。 我们长期以来一直推测这两种逻辑是相同的。 在本文中,我们显示这种推论是虚假的。 我们还调查了两种逻辑的复杂性, 显示两种逻辑之间的巨大差距。 而 BV 的可变性是 NP 不完整的, 孔塞逻辑的可变性是 $\Sigma_ 2 ⁇ p$- 完成 。 我们还对两种逻辑的可能序列系统做了一些观察 。