Linear computation broadcast (LCBC) refers to a setting with $d$ dimensional data stored at a central server, where $K$ users, each with some prior linear side-information, wish to retrieve various linear combinations of the data. The goal is to determine the minimum amount of information that must be broadcast to satisfy all the users. The reciprocal of the optimal broadcast cost is the capacity of LCBC. The capacity is known for up to $K=3$ users. Since LCBC includes index coding as a special case, large $K$ settings of LCBC are at least as hard as the index coding problem. Instead of the general setting (all instances), by focusing on the generic setting (almost all instances) this work shows that the generic capacity of the symmetric LCBC (where every user has $m'$ dimensions of side-information and $m$ dimensions of demand) for large number of users ($K>d$ suffices) is $C_g=1/\Delta_g$, where $\Delta_g=\min\left\{\max\{0,d-m'\}, Km, \frac{dm}{m+m'}\right\}$ is the broadcast cost that is both achievable and unbeatable asymptotically almost surely for large $n$, among all LCBC instances with the given parameters $p,K,d,m,m'$. Relative to baseline schemes of random coding or separate transmissions, $C_g$ shows an extremal gain by a factor of $K$ as a function of number of users, and by a factor of $\approx d/4$ as a function of data dimensions, when optimized over remaining parameters. For arbitrary number of users, the generic capacity of the symmetric LCBC is characterized within a factor of $2$.


翻译:线性计算广播 (LCBC) 是指在中央服务器上存储以美元为单位的数据的设置, 中央服务器上存储以美元为单位的维度数据, 每一个用户都拥有一些线性数据组合。 目标是确定必须广播以满足所有用户的最低信息量。 最佳广播成本的对等值是 LCBC 的能力。 由于LCBC 将指数编码作为一个特例包含在内, 大型 美元 的LCBC 标准值至少与指数基准编码问题一样难。 与一般设置( 所有实例) 相比, $K 用户希望检索各种数据线性组合。 以通用设置( 几乎所有实例) 为单位确定最小的 LCBC 信息量和需求量的对等量。 大量用户( K>d 美元) 的容量是 美元=1/ Delta_ g$ 的指数值, 里程值至少是 $@\\\\\ 美元 美元, 美元 美元的递增量的用户的参数是 =xxxxxxx 美元, 。 kxxxxxxxxxxxxxxxx 的 。 的 。 axxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

0
下载
关闭预览

相关内容

Linux导论,Introduction to Linux,96页ppt
专知会员服务
79+阅读 · 2020年7月26日
专知会员服务
162+阅读 · 2020年1月16日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium7
中国图象图形学学会CSIG
0+阅读 · 2021年11月15日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年10月25日
Arxiv
0+阅读 · 2022年10月24日
VIP会员
相关VIP内容
Linux导论,Introduction to Linux,96页ppt
专知会员服务
79+阅读 · 2020年7月26日
专知会员服务
162+阅读 · 2020年1月16日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
相关资讯
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium7
中国图象图形学学会CSIG
0+阅读 · 2021年11月15日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员