In this paper, we target the problem of sufficient dimension reduction with symmetric positive definite matrices valued responses. We propose the intrinsic minimum average variance estimation method and the intrinsic outer product gradient method which fully exploit the geometric structure of the Riemannian manifold where responses lie. We present the algorithms for our newly developed methods under the log-Euclidean metric and the log-Cholesky metric. Each of the two metrics is linked to an abelian Lie group structure that transforms our model defined on a manifold into a Euclidean one. The proposed methods are then further extended to general Riemannian manifolds. We establish rigourous asymptotic results for the proposed estimators, including the rate of convergence and the asymptotic normality. We also develop a cross validation algorithm for the estimation of the structural dimension with theoretical guarantee Comprehensive simulation studies and an application to the New York taxi network data are performed to show the superiority of the proposed methods.
翻译:在本文中,我们以对称正确定矩阵值的对应反应来针对充分减少维度的问题。我们提出了内在最低平均差异估计方法和内在外部产品梯度方法,这种方法充分利用了反应所在的里曼尼方形的几何结构。我们介绍了我们新开发的方法的算法,根据日志-欧几里德指标和日志-考尔斯基测量法。两种指标中的每一种都与将我们所定义的方块模型转换成欧几里德方格的方块的方块结构相连。然后,将拟议方法进一步扩展至一般的里曼多元体。我们为拟议的天线标定了严格的非抽取结果,包括趋同率和无损正常性。我们还开发了一种交叉验证算法,用理论保证综合模拟研究和对纽约出租车网络数据的应用来估计结构层面,以显示拟议方法的优越性。</s>