Wireless fingerprinting refers to a device identification method leveraging hardware imperfections and wireless channel variations as signatures. Beyond physical layer characteristics, recent studies demonstrated that user behaviours could be identified through network traffic, e.g., packet length, without decryption of the payload. Inspired by these results, we propose a multi-layer fingerprinting framework that jointly considers the multi-layer signatures for improved identification performance. In contrast to previous works, by leveraging the recent multi-view machine learning paradigm, i.e., data with multiple forms, our method can cluster the device information shared among the multi-layer features without supervision. Our information-theoretic approach can be extended to supervised and semi-supervised settings with straightforward derivations. In solving the formulated problem, we obtain a tight surrogate bound using variational inference for efficient optimization. In extracting the shared device information, we develop an algorithm based on the Wyner common information method, enjoying reduced computation complexity as compared to existing approaches. The algorithm can be applied to data distributions belonging to the exponential family class. Empirically, we evaluate the algorithm in a synthetic dataset with real-world video traffic and simulated physical layer characteristics. Our empirical results show that the proposed method outperforms the state-of-the-art baselines in both supervised and unsupervised settings.
翻译:无线指纹识别是一种利用硬件缺陷和无线信道变化作为设备识别方法的技术。最近的研究表明,除了物理层特征之外,通过网络流量,例如数据包长度,也可以识别用户行为而无需解密负载。受这些研究结果的启发,我们提出了一种多层指纹识别框架,同时考虑多层特征以提高识别性能。与以往的工作不同,通过利用最近的多视图机器学习范例,即具有多种形式的数据,我们的方法可以在无监督的情况下聚类多层特征之间共享的设备信息。我们的信息论方法可以通过简单的推导扩展到监督和半监督设置。为了解决所提出的问题,我们使用变分推理获得了紧密的代理边界,以进行高效的优化。在提取共享的设备信息方面,我们基于 Wyner 公共信息方法开发了一个算法,相对于现有方法,可以降低计算复杂度。该算法可应用于属于指数族类别的数据分布。在一个包含真实视频流量和模拟物理层特征的合成数据集中,我们进行了实证评估。实证结果表明,所提出的方法在监督和无监督设置下都优于现有的基线方法。