Medical image segmentation often requires segmenting multiple elliptical objects on a single image. This includes, among other tasks, segmenting vessels such as the aorta in axial CTA slices. In this paper, we present a general approach to improving the semantic segmentation performance of neural networks in these tasks and validate our approach on the task of aorta segmentation. We use a cascade of two neural networks, where one performs a rough segmentation based on the U-Net architecture and the other performs the final segmentation on polar image transformations of the input. Connected component analysis of the rough segmentation is used to construct the polar transformations, and predictions on multiple transformations of the same image are fused using hysteresis thresholding. We show that this method improves aorta segmentation performance without requiring complex neural network architectures. In addition, we show that our approach improves robustness and pixel-level recall while achieving segmentation performance in line with the state of the art.
翻译:医学图像分割往往需要在单一图像上对多个椭圆形进行分解。 除其他外, 这包括诸如轴心CTA切片中的动脉切片等分解容器。 在本文中, 我们展示了改善神经网络在这些任务中的静脉分解功能的一般方法, 并验证了我们关于动脉分解任务的方法。 我们使用两个神经网络的级联, 其中一个人根据 U- Net 结构对输入的极图像转换进行粗略分解, 而另一个人对输入的极地图像转换进行最后分解。 粗略分解的连接组件分析用于构建极地变, 而同一图像的多变的预测则使用歇斯底里临界值进行结合。 我们显示, 这种方法可以改善动脉分解功能, 而不需要复杂的神经网络结构。 此外, 我们展示了我们的方法在按照艺术状态实现分解性功能的同时, 提高稳健性和像素水平。