Marginalising over families of Gaussian Process kernels produces flexible model classes with well-calibrated uncertainty estimates. Existing approaches require likelihood evaluations of many kernels, rendering them prohibitively expensive for larger datasets. We propose a Bayesian Quadrature scheme to make this marginalisation more efficient and thereby more practical. Through use of the maximum mean discrepancies between distributions, we define a kernel over kernels that captures invariances between Spectral Mixture (SM) Kernels. Kernel samples are selected by generalising an information-theoretic acquisition function for warped Bayesian Quadrature. We show that our framework achieves more accurate predictions with better calibrated uncertainty than state-of-the-art baselines, especially when given limited (wall-clock) time budgets.
翻译:位于高山进程内核家庭边缘的边际效应产生灵活的模型类,并有经充分校准的不确定性估计值。 现有方法要求对许多内核进行概率评估,使得它们对于较大的数据集来说过于昂贵。 我们提出了一个巴伊西亚二次曲线图案,以使这种边际效应更加有效,从而更加实用。 通过使用分布之间的最大平均值差异,我们定义了内核的内核,以捕捉光谱混凝土(SM)内核之间的差异。 内核样本是通过对扭曲的巴伊西亚二次曲线的一般信息理论获取功能来选择的。 我们显示,我们的框架比最新基线更精确的校准不确定性实现了更准确的预测, 特别是在有限的( 时钟) 预算情况下。</s>