Existing multi-camera SLAM systems assume synchronized shutters for all cameras, which is often not the case in practice. In this work, we propose a generalized multi-camera SLAM formulation which accounts for asynchronous sensor observations. Our framework integrates a continuous-time motion model to relate information across asynchronous multi-frames during tracking, local mapping, and loop closing. For evaluation, we collected AMV-Bench, a challenging new SLAM dataset covering 482 km of driving recorded using our asynchronous multi-camera robotic platform. AMV-Bench is over an order of magnitude larger than previous multi-view HD outdoor SLAM datasets, and covers diverse and challenging motions and environments. Our experiments emphasize the necessity of asynchronous sensor modeling, and show that the use of multiple cameras is critical towards robust and accurate SLAM in challenging outdoor scenes.
翻译:在这项工作中,我们提议采用通用的多镜头SLMM制式,其中考虑到非同步传感器观测。我们的框架整合了一个连续时间运动模型,以便在跟踪、当地绘图和环圈关闭期间将信息贯穿于无同步多框架;在评估中,我们收集了AMV-Bench,这是一个具有挑战性的新的SLMM数据集,覆盖了482公里的驾驶器,使用我们的非同步多镜头机器人平台记录。AMV-Bench是一个规模大于以往多视图的HD户外SLM数据集,涵盖各种具有挑战性的运动和环境。我们的实验强调,必须用无同步传感器建模,并表明在具有挑战性的户外场景区使用多摄像头对于稳健和准确的SLMM至关重要。