The data loss caused by unreliable network seriously impacts the results of remote visual SLAM systems. From our experiment, a loss of less than 1 second of data can cause a visual SLAM algorithm to lose tracking. We present a novel buffering method, ORBBuf, to reduce the impact of data loss on remote visual SLAM systems. We model the buffering problem as an optimization problem by introducing a similarity metric between frames. To solve the buffering problem, we present an efficient greedy-like algorithm to discard the frames that have the least impact on the quality of SLAM results. We implement our ORBBuf method on ROS, a widely used middleware framework. Through an extensive evaluation on real-world scenarios and tens of gigabytes of datasets, we demonstrate that our ORBBuf method can be applied to different state-estimation algorithms (DSO and VINS-Fusion), different sensor data (both monocular images and stereo images), different scenes (both indoor and outdoor), and different network environments (both WiFi networks and 4G networks). Our experimental results indicate that the network losses indeed affect the SLAM results, and our ORBBuf method can reduce the RMSE up to 50 times comparing with the Drop-Oldest and Random buffering methods.


翻译:由不可靠的网络造成的数据损失严重影响了远程视觉 SLAM 系统的结果。 通过我们的实验, 损失不到1秒钟的数据可能导致视觉SLAM算法丢失。 我们展示了一种新的缓冲方法, ORBBuf, 以减少数据损失对远程视觉 SLAM 系统的影响。 我们将缓冲问题模拟成一个优化问题, 在框架之间引入一个相似的衡量标准。 为了解决缓冲问题, 我们展示了一种高效的贪婪式算法, 丢弃对 SLAM 结果质量影响最小的框架。 我们通过实验结果, 在广泛使用的中间软件框架ROS 上应用我们的ORBBUF 方法。 通过对真实世界情景和数十千兆字节数据集进行广泛评估, 我们证明我们的OrBUf 方法可以应用到不同的州估测算算法( DSOO和VINS-Fusion ) 、 不同的传感器数据(包括单色图像和立体图像)、 不同的场景(包括室内和室外)以及不同的网络环境( WiFi网络和4G 网络) 。 我们的实验结果显示网络损失确实影响了SLMM的结果。 我们的网络损失确实影响了SLO- SDRAM结果, 和我们的OBULO 和缓冲方法可以降低。

0
下载
关闭预览

相关内容

专知会员服务
50+阅读 · 2020年12月14日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
专知会员服务
109+阅读 · 2020年3月12日
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
ICRA 2019 论文速览 | 基于Deep Learning 的SLAM
计算机视觉life
41+阅读 · 2019年7月22日
【泡泡汇总】CVPR2019 SLAM Paperlist
泡泡机器人SLAM
14+阅读 · 2019年6月12日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
【泡泡一分钟】DS-SLAM: 动态环境下的语义视觉SLAM
泡泡机器人SLAM
23+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Ray RLlib: Scalable 降龙十八掌
CreateAMind
9+阅读 · 2018年12月28日
【泡泡一分钟】用于平面环境的线性RGBD-SLAM
泡泡机器人SLAM
6+阅读 · 2018年12月18日
【泡泡前沿追踪】跟踪SLAM前沿动态系列之IROS2018
泡泡机器人SLAM
29+阅读 · 2018年10月28日
Single-frame Regularization for Temporally Stable CNNs
VIP会员
相关资讯
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
ICRA 2019 论文速览 | 基于Deep Learning 的SLAM
计算机视觉life
41+阅读 · 2019年7月22日
【泡泡汇总】CVPR2019 SLAM Paperlist
泡泡机器人SLAM
14+阅读 · 2019年6月12日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
【泡泡一分钟】DS-SLAM: 动态环境下的语义视觉SLAM
泡泡机器人SLAM
23+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Ray RLlib: Scalable 降龙十八掌
CreateAMind
9+阅读 · 2018年12月28日
【泡泡一分钟】用于平面环境的线性RGBD-SLAM
泡泡机器人SLAM
6+阅读 · 2018年12月18日
【泡泡前沿追踪】跟踪SLAM前沿动态系列之IROS2018
泡泡机器人SLAM
29+阅读 · 2018年10月28日
Top
微信扫码咨询专知VIP会员