基于人工智能技术的人机对话系统在人机交互、智能助手、智能客服、问答咨询等多个领域应用日益广泛,这极大地促进了自然语言理解及生成、对话状态追踪和端到端的深度学习模型构建等相关理论与技术的发展,并成为目前工业界与学术界共同关注的研究热点之一。该文聚焦特定场景下的任务型对话系统,在对其基本概念进行形式化定义的基础上,围绕着以最少的对话轮次来获得最佳用户需求相匹配的对话内容为目标,针对目前存在的复杂业务场景下基于自然语言的用户意图的准确理解和识别、针对训练数据的标注依赖及模型结果的可解释性不足,以及多模态条件下对话内容的个性化生成这三个重大的技术问题和挑战,对当前的技术与研究进展进行系统地对比分析和综述,为进一步的研究工作奠定基础。同时,对新一代的面向任务型的人机对话系统未来的关键研究方向与任务进行总结。