Large-scale observational health databases are increasingly popular for conducting comparative effectiveness and safety studies of medical products. However, increasing number of patients poses computational challenges when fitting survival regression models in such studies. In this paper, we use graphics processing units (GPUs) to parallelize the computational bottlenecks of massive sample-size survival analyses. Specifically, we develop and apply time- and memory-efficient single-pass parallel scan algorithms for Cox proportional hazards models and forward-backward parallel scan algorithms for Fine-Gray models for analysis with and without a competing risk using a cyclic coordinate descent optimization approach We demonstrate that GPUs accelerate the computation of fitting these complex models in large databases by orders-of-magnitude as compared to traditional multi-core CPU parallelism. Our implementation enables efficient large-scale observational studies involving millions of patients and thousands of patient characteristics.
翻译:大型观测健康数据库越来越受欢迎,用于对医疗产品进行比较性效益和安全研究,然而,越来越多的病人在为此类研究中适合生存回归模型时,构成计算挑战。在本文中,我们使用图形处理单位(GPUs)来平行大规模抽样规模生存分析的计算瓶颈。具体地说,我们开发和应用Cox比例危害模型的时间和记忆效率单行平行扫描算法,以及Fine-Gray模型的后向平行扫描算法,以便利用循环协调的下降优化方法进行分析和避免相互竞争的风险。我们证明,GPUs加快了在大型数据库中安装这些复杂模型的计算速度,其计算方法是:与传统的多核心CPU平行法相比,由超强的次序和高密度的多倍倍倍数平行法进行。我们的实施使涉及数百万病人和数千个病人特征的高效的大规模观测研究得以进行。