项目名称: 准周期薛定谔算子中的动力系统理论

项目编号: No.11371055

项目类型: 面上项目

立项/批准年度: 2013

项目学科: 数理科学和化学

项目作者: 刘庆晖

作者单位: 北京理工大学

项目金额: 50万元

中文摘要: 本项目拟研究准周期薛定谔算子谱的结构。该研究主要依赖于动力系统理论工具,同时也能促进动力系统理论的发展。本项目的意义在于借助分形几何、动力系统理论,发展薛定谔算子谱理论,为相关物理研究提供理论基础。本项目将首先完成连分式展开部分商无界的频率对应的Sturm势薛定谔算子谱结构的研究,同时将研究Cookie-Cutter-like动力系统对应集合的维数与熵、Lyapunov指数的关系,再将复动力系统理论引入到一般Sturm势的研究中,还将利用动力系统方法研究Thue-Morse序列和Toeplitz序列的谱结构。

中文关键词: 离散薛定谔算子;Sturm势;Thue-Morse势;无界;分形维数

英文摘要: The project is devoted to study spectrum structure of Schrodinger operator. The study relies on tools of dynamical system theory, and can also improve the development of dynamical system theory.The primary value of the study is that, by the help of fracta

英文关键词: discrete Schrodinger operator;Sturm potential;Thue-Morse potential;unbounded;fractal dimension

成为VIP会员查看完整内容
0

相关内容

ICLR 2022 | BEIT论文解读:将MLM无监督预训练应用到CV领域
专知会员服务
32+阅读 · 2022年3月24日
专知会员服务
48+阅读 · 2021年8月4日
【干货书】计算机科学家的数学,153页pdf
专知会员服务
170+阅读 · 2021年7月27日
专知会员服务
113+阅读 · 2021年7月24日
【经典书】图理论与复杂网络导论,287页pdf
专知会员服务
133+阅读 · 2021年3月5日
专知会员服务
34+阅读 · 2020年11月26日
【哈佛经典书】概率论与随机过程及其应用,382页pdf
专知会员服务
61+阅读 · 2020年11月14日
《常微分方程》笔记,419页pdf
专知会员服务
71+阅读 · 2020年8月2日
【经典书】概率统计导论第五版,730页pdf
专知会员服务
237+阅读 · 2020年7月28日
17个改变世界的数学公式,马斯克点赞
量子位
0+阅读 · 2022年3月8日
超详细图解Self-Attention的那些事儿
极市平台
1+阅读 · 2021年10月14日
神经网络常微分方程 (Neural ODEs) 解析
AI科技评论
40+阅读 · 2019年8月9日
视频 | 计算机科学中的数学 01
遇见数学
15+阅读 · 2018年4月14日
入门 | 一文介绍机器学习中基本的数学符号
机器之心
28+阅读 · 2018年4月9日
图解高等数学|线性代数
遇见数学
39+阅读 · 2017年10月18日
【基础数学】- 01
遇见数学
19+阅读 · 2017年7月25日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2022年4月16日
Arxiv
0+阅读 · 2022年4月15日
Deformable Style Transfer
Arxiv
14+阅读 · 2020年3月24日
小贴士
相关主题
相关VIP内容
ICLR 2022 | BEIT论文解读:将MLM无监督预训练应用到CV领域
专知会员服务
32+阅读 · 2022年3月24日
专知会员服务
48+阅读 · 2021年8月4日
【干货书】计算机科学家的数学,153页pdf
专知会员服务
170+阅读 · 2021年7月27日
专知会员服务
113+阅读 · 2021年7月24日
【经典书】图理论与复杂网络导论,287页pdf
专知会员服务
133+阅读 · 2021年3月5日
专知会员服务
34+阅读 · 2020年11月26日
【哈佛经典书】概率论与随机过程及其应用,382页pdf
专知会员服务
61+阅读 · 2020年11月14日
《常微分方程》笔记,419页pdf
专知会员服务
71+阅读 · 2020年8月2日
【经典书】概率统计导论第五版,730页pdf
专知会员服务
237+阅读 · 2020年7月28日
相关资讯
17个改变世界的数学公式,马斯克点赞
量子位
0+阅读 · 2022年3月8日
超详细图解Self-Attention的那些事儿
极市平台
1+阅读 · 2021年10月14日
神经网络常微分方程 (Neural ODEs) 解析
AI科技评论
40+阅读 · 2019年8月9日
视频 | 计算机科学中的数学 01
遇见数学
15+阅读 · 2018年4月14日
入门 | 一文介绍机器学习中基本的数学符号
机器之心
28+阅读 · 2018年4月9日
图解高等数学|线性代数
遇见数学
39+阅读 · 2017年10月18日
【基础数学】- 01
遇见数学
19+阅读 · 2017年7月25日
相关基金
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
微信扫码咨询专知VIP会员