这本书通过探索计算机科学理论和机器学习双方可以相互传授的内容,将理论和机器学习联系起来。它强调了对灵活、易于操作的模型的需求,这些模型更好地捕捉使机器学习变得容易的东西,而不是让机器学习变得困难的东西。
理论计算机科学家将被介绍到机器学习的重要模型和该领域的主要问题。机器学习研究人员将以一种可访问的格式介绍前沿研究,并熟悉现代算法工具包,包括矩法、张量分解和凸规划松弛。
超越最坏情况分析的处理方法是建立对实践中使用的方法的严格理解,并促进发现令人兴奋的、解决长期存在的重要问题的新方法。
在这本书中,我们将涵盖以下主题:
(a)非负矩阵分解
(b)主题建模
(c)张量分解
(d)稀疏恢复
(e)稀疏编码
(f)学习混合模型
(g)矩阵补全