项目名称: 非完整系统的约束子流形辛化及其在对称约化中的应用

项目编号: No.11202090

项目类型: 青年科学基金项目

立项/批准年度: 2013

项目学科: 数理科学和化学

项目作者: 刘畅

作者单位: 辽宁大学

项目金额: 26万元

中文摘要: 内容:1)研究非完整系统约束子流形的几何结构,构造其闭合(或奇异或正规)的基本2-形式,即广义辛形式,并在此框架下构造具有广义辛几何结构的约束流形上非完整系统的新表示- - 广义伯克霍夫表示。2)深入分析广义辛几何结构与预辛几何结构的关系,并以此研究广义伯克霍夫动力学系统与狄拉克约束奇异动力学系统之间的关系。3)研究具有对称性的广义伯克霍夫系统动量映射的守恒性及其演化方程,并将其应用于研究具有对称性的非完整系统的对称约化问题。意义:运用广义辛几何方法,可以实现非完整系统的封闭几何结构,并把约束方程的非完整性表现为广义辛结构的奇异性,突破了在传统几何力学中仅采用近泊松几何结构研究非完整系统的局限,扩展了预辛几何的研究范围,使得广义伯克霍夫系统成为一种"准"奇异系统,同时可以实现非完整系统对称约化研究的新途径- - 广义伯克霍夫约化,为可以为非完整系统的几何数值积分和几何控制研究奠定新的理论基础。

中文关键词: 非完整约束;广义Birkhoff系统;对称约化;广义辛结构;

英文摘要: Content: 1) The geometric structure on constrained submanifolds of nonholonomic systems is investigated and the closed (singular or regular) basic 2-form,i.e., the generalized symplectic form can be constructed in this project. In the framework of the generalized symplectic geometric structure of constrained submanifolds, a new dynamical representation of nonholonomic systems,i.e., the generalized Birkhoffian formulation of can be realized. 2) On the basis of analysing the distinguishment between generalized symplectic structure and presymplectic structure, the relation between generalized Birkhoffian systems and Dirac singular systems is investigated. 3) The conservation and evolvenment equations of momentum maps for generalized Birkhoffian systems with symmetry are discussed, which can be used to investigate the symmetry reduction of nonholonomic systems with symmetry. Meaning: The generalized symplectic geometric method is utilized to realize the closed geometric structure of nonholonomic systems, and the nonholonomicity of constrained equations can be represented by the singularity of generalized symplectic structure, which break through the study on nonholonomic systems by traditional geometric mechanics method which is only based on the almost-Poisson geometric structure. The generalized Birkhoffian syst

英文关键词: nonholonomic constraints;generalized Birkhoffian system;symmetry reduction;generalized symplectic structure;

成为VIP会员查看完整内容
0

相关内容

专知会员服务
6+阅读 · 2021年9月20日
算法分析导论, 593页pdf
专知会员服务
148+阅读 · 2021年8月30日
专知会员服务
77+阅读 · 2021年7月23日
【开放书】《矩阵流形优化算法》,241页pdf
专知会员服务
93+阅读 · 2021年7月3日
【经典书】线性代数元素,197页pdf
专知会员服务
55+阅读 · 2021年3月4日
【2021新书】流形几何结构,322页pdf
专知会员服务
53+阅读 · 2021年2月22日
最新《非凸优化理论》进展书册,79页pdf
专知会员服务
108+阅读 · 2020年12月18日
【博士论文】解耦合的类脑计算系统栈设计
专知会员服务
30+阅读 · 2020年12月14日
专知会员服务
34+阅读 · 2020年11月26日
图神经网络的困境,用微分几何和代数拓扑解决
机器之心
4+阅读 · 2022年3月27日
约束进化算法及其应用研究综述
专知
0+阅读 · 2021年4月12日
【经典书】线性代数,436页pdf
专知
3+阅读 · 2021年3月16日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
4+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2022年4月20日
Arxiv
0+阅读 · 2022年4月19日
Arxiv
0+阅读 · 2022年4月19日
小贴士
相关主题
相关VIP内容
专知会员服务
6+阅读 · 2021年9月20日
算法分析导论, 593页pdf
专知会员服务
148+阅读 · 2021年8月30日
专知会员服务
77+阅读 · 2021年7月23日
【开放书】《矩阵流形优化算法》,241页pdf
专知会员服务
93+阅读 · 2021年7月3日
【经典书】线性代数元素,197页pdf
专知会员服务
55+阅读 · 2021年3月4日
【2021新书】流形几何结构,322页pdf
专知会员服务
53+阅读 · 2021年2月22日
最新《非凸优化理论》进展书册,79页pdf
专知会员服务
108+阅读 · 2020年12月18日
【博士论文】解耦合的类脑计算系统栈设计
专知会员服务
30+阅读 · 2020年12月14日
专知会员服务
34+阅读 · 2020年11月26日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
4+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
微信扫码咨询专知VIP会员