项目名称: 拓扑方法及其在几类非线性微分方程中的应用
项目编号: No.11201473
项目类型: 青年科学基金项目
立项/批准年度: 2013
项目学科: 数理科学和化学
项目作者: 刘炳妹
作者单位: 中国矿业大学
项目金额: 22万元
中文摘要: 本项目主要研究三个方面的内容: (1)利用拓扑度理论,研究非线性项下方无界的微分方程边值问题,建立其正解、多解和变号解的存在性。(2)利用不动点指数理论和拓扑度理论,研究半序Banach空间中非映锥到锥的非线性算子方程不动点、变号不动点及个数。(3)利用拓扑方法和临界点理论,研究拟线性Kirchhoff型偏微分方程在全空间上的变号解和多解性。这些问题的解决可以发展和完善非线性泛函分析的理论,扩大拓扑方法的应用范围。本课题不仅具有重要的理论意义而且具有重要的应用价值。
中文关键词: 拓扑方法;变号;边值问题;唯一解;
英文摘要: This project mainly includes the following three aspects: (1)We are to study the existence of positive solutions, multiple solutions and sign-changing solutions of boundary value problems for nonlinear differential equations by topological degree theory, where nonlinear terms are unbounded from below. (2)We are to study fixed points, sign-changing fixed points and its number of nonlinear operator equations that do not map cones into cones in Banach space based on the fixed index theory and topological degree theory. (3)We are to study the sign-changing solutions and multiple solutions for quasilinear Kirchhoff partial differential equations in the whole space by topoplogical method and critical point theory. This research will develop and perfect theories of nonlinear functional analysis, widen the applications of topological method. Therefore, the research has important theoretical significance and application values.
英文关键词: topological method;;sign-changing;boundary value problem;unique solution;