项目名称: 从初边值问题到双曲方程的低维表示

项目编号: No.11201296

项目类型: 青年科学基金项目

立项/批准年度: 2013

项目学科: 数理科学和化学

项目作者: 邓师瑾

作者单位: 上海交通大学

项目金额: 22万元

中文摘要: 在本项目中,我们将主要考虑两类方程(带耗散机制的发展方程、双曲方程)在高维情形时的初边值问题。为了更好地了解边界在整个问题中起到的举足轻重的作用,弄清不同机制对于解的影响,我们延续之前的研究,试图获得解的逐点估计。对于前一类方程,侧重点在于改进我们现有的用以处理一维具耗散边界条件问题的Green函数方法,以获取高维情形时系统的处理初边值问题的方法;而对于后一类方程(双曲方程),我们更大的兴趣是在边界上波的传播状况,这一清晰的刻画无论从数学分析的角度来看还是对一些实际热点问题(如地震)都将起到重要作用。在本项目的研究中,我们不仅将对现有工具进一步改进,更将针对问题的具体难点创建一些新的工具和方法。

中文关键词: 波动方程;Navier-Stokes 方程;重整引理;消去律;Green函数

英文摘要: In this program, the initial-boundary value problems for two kinds of equations (time-dependent equations with dissipation mechanisms and hyperbolic equations) in multi-dimensional space will be studied. For deep understanding of interactions between boun

英文关键词: Wave equation;Navier-Stokes equations;recombination lemma;cancellation law;Green’s function

成为VIP会员查看完整内容
0

相关内容

【干货书】计算机科学家的数学,153页pdf
专知会员服务
170+阅读 · 2021年7月27日
[WWW2021]图结构估计神经网络
专知会员服务
42+阅读 · 2021年3月29日
专知会员服务
80+阅读 · 2020年12月18日
【哈佛经典书】概率论与随机过程及其应用,382页pdf
专知会员服务
61+阅读 · 2020年11月14日
《常微分方程》笔记,419页pdf
专知会员服务
71+阅读 · 2020年8月2日
【MIT-ICML2020】图神经网络的泛化与表示的局限
专知会员服务
42+阅读 · 2020年6月23日
【ICLR2020】图神经网络与图像处理,微分方程,27页ppt
专知会员服务
47+阅读 · 2020年6月6日
图神经网络的困境,用微分几何和代数拓扑解决
机器之心
4+阅读 · 2022年3月27日
一文说清linux system load
阿里技术
0+阅读 · 2021年12月15日
图表示学习Graph Embedding综述
AINLP
33+阅读 · 2020年5月17日
图嵌入(Graph embedding)综述
人工智能前沿讲习班
449+阅读 · 2019年4月30日
误差反向传播——RNN
统计学习与视觉计算组
18+阅读 · 2018年9月6日
误差反向传播——CNN
统计学习与视觉计算组
30+阅读 · 2018年7月12日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Identity-aware Graph Neural Networks
Arxiv
14+阅读 · 2021年1月25日
Deformable Style Transfer
Arxiv
14+阅读 · 2020年3月24日
小贴士
相关主题
相关VIP内容
【干货书】计算机科学家的数学,153页pdf
专知会员服务
170+阅读 · 2021年7月27日
[WWW2021]图结构估计神经网络
专知会员服务
42+阅读 · 2021年3月29日
专知会员服务
80+阅读 · 2020年12月18日
【哈佛经典书】概率论与随机过程及其应用,382页pdf
专知会员服务
61+阅读 · 2020年11月14日
《常微分方程》笔记,419页pdf
专知会员服务
71+阅读 · 2020年8月2日
【MIT-ICML2020】图神经网络的泛化与表示的局限
专知会员服务
42+阅读 · 2020年6月23日
【ICLR2020】图神经网络与图像处理,微分方程,27页ppt
专知会员服务
47+阅读 · 2020年6月6日
相关资讯
图神经网络的困境,用微分几何和代数拓扑解决
机器之心
4+阅读 · 2022年3月27日
一文说清linux system load
阿里技术
0+阅读 · 2021年12月15日
图表示学习Graph Embedding综述
AINLP
33+阅读 · 2020年5月17日
图嵌入(Graph embedding)综述
人工智能前沿讲习班
449+阅读 · 2019年4月30日
误差反向传播——RNN
统计学习与视觉计算组
18+阅读 · 2018年9月6日
误差反向传播——CNN
统计学习与视觉计算组
30+阅读 · 2018年7月12日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
微信扫码咨询专知VIP会员