While any infimum in a poset can also be computed as a supremum, and vice versa, categorical limits and colimits do not always approximate each other. If I approach a point from below, and you approach it from above, then we will surely meet if we live in a poset, but we may miss each other in a category. Can we characterize the limits and the colimits that approximate each other, and guarantee that we will meet? Such limits and colimits are called *tight*. Some critically important network applications depend on them. This paper characterizes tight limits and colimits, and describes tight completions, derived by applying the nucleus construction to adjunctions between loose completions. Just as the Dedekind-MacNeille completion of a poset preserves any existing infima and suprema, the tight completion of a category preserves any existing tight limits and colimits and is therefore idempotent.
翻译:虽然任何表面上的最小界限也可以被算作最优的界限,反之亦然,但绝对的界限和共同的界限并非总能相互接近。如果我从下面接近一个点,而你们从上面接近,那么如果我们生活在一个表面上,我们肯定会相遇,但我们可能会在一个类别中错失。我们可以描述彼此相近的界限和共同的界限,并保证我们将会达到?这些界限和共同的界限被称为* tight*。一些至关重要的网络应用程序取决于这些界限和共同的界限。本文描述了严格的界限和共同的界限,并描述了通过对松散的完成之间对核构造进行配合而得出的紧凑的完成。正如一个堆的完工保留了任何现存的直角和直角,一个类别的紧凑的完成保留了任何现有的紧凑的界限和共同的界限,因此是一罪不二审的。