项目名称: 哈密顿系统与微分方程中一些问题的研究
项目编号: No.11471170
项目类型: 面上项目
立项/批准年度: 2015
项目学科: 数理科学和化学
项目作者: 刘春根
作者单位: 广州大学
项目金额: 65万元
中文摘要: 本项目将以非线性分析与辛几何具有重要意义的几个问题作为研究对象,利用非线性分析方法,尤其是变分方法,临界点理论和指标理论等,着重研究非线性哈密顿系统周期解及其相关的某些边值问题,例如开弦问题、Lagrange边值问题等等,这是辛几何与哈密顿系统中具有非常重要意义的一类问题,这类问题可以在欧氏空间,也可以在辛流形和切触流形上有意义。同时,还研究具有变分结构的非线性偏微分方程一些边值问题的存在性和多重性,这些问题具有明显的物理学,力学、几何学的背景,有着现实的应用价值和重要的理论意义。通过对这些问题的研究,使我们进一步认识理解整体分析,微分动力系统,微分几何尤其是辛几何这些方向之间的相互联系具有重要的指导意义。通过这个项目,组织青年学者跟踪国际数学前沿研究方向和发展趋势,有针对地研究一些问题,对于培养数学高级专业人才具有很重要的意义。
中文关键词: 临界点理论;变分方法;非线性分析;哈密顿系统;微分方程
英文摘要: In this program, we will consider and study some significant problems in nonlinear analysis and symplectic geometry via some nonlinear analysis methods such as variational methods, critical point theory and index theory. Specially we will research the multiplicity and stability probles in nonlinear Hamiltonian systems for periodic solution and some relative solutions such as open string problems, Lagrangian boundary condition problems, etc. All these problems are very important in symplectic geometry and Hamiltonia systems. With this program, we will also research some boundary problems for partial differential equations with variational structure so that the solution can be solved as a critical point of a functional. These problems usally have the background of physics, mechanics or geometrics, so from this program, we can more deeply know and understand the relationship between the global analysis, differential dynamics and differential geometry including symplectic geometry. By this program, we can organize some young mathematicians to work following along the international frontier domains, and study some relative problems, it is important in trainning high level person for mathematical researches.
英文关键词: critical point theory;variational method;nonlinear analysis;Hamiltonian systems;differential equation