项目名称: 伪抛物型方程的若干定性问题

项目编号: No.11201047

项目类型: 青年科学基金项目

立项/批准年度: 2013

项目学科: 数理科学和化学

项目作者: 曹杨

作者单位: 大连理工大学

项目金额: 22万元

中文摘要: 本项目拟研究伪抛物型方程,其特点是具有关于时-空混合导的高阶项.这类方程来源于裂隙多孔介质的渗流、非线性色散长波、粘弹性不可压缩流体等问题中广泛存在的阻性扩散过程,同时也可作为研究图像处理等问题中的非适定模型的有效的正则化逼近. 本项目旨在通过研究这类方程的若干定性问题,考察伪抛物粘性对解的性态的影响,从而揭示其与对应抛物及双曲模型解的性态的区别与联系,为真实模型的理论分析和数值计算提供一种更合理的逼近过程.拟研究死核、行波解、传播的Pinning/Depinning以及解的渐近行为等伪抛物型方程领域尚无完整结果的问题.伪抛物型方程本身的特有结构,尤其是当退化性、奇异性出现在高阶混合导项时,会为研究带来本质性困难,需要寻找新的研究思路.本项目的研究结果和方法将对解释有关物理现象提供重要参考,并在一定程度上丰富和完善偏微分方程的理论.

中文关键词: 伪抛物型方程;临界指标;周期解;行波解;

英文摘要: In this project, we study a class of pseudo-parabolic equations,which are characterized by the occurrence of mixed time and space derivative appearing in the highest-order term, and arise in the viscous diffusion processes that widely exist in the seepage in fissured porous medium, nonlinear dispersive long wave, viscous incompressible fluids etc. Moreover, they can be used as effective regularization for treating the non-wellposed models from image processing etc. Via studying several qualitative problems of pseudo-parabolic equations, this project aims to investigate the effect of the viscous term of pseudo-parabolic type, so as to reveal the difference and relation between the properties of solutions to that of the corresponding parabolic and hyperbolic models, and thus provide some more reasonable approximation processes. We mainly concern the dead-core, traveling wave solution, Pinning/Depinning in the propogation and the asymptotic behavior of solutions, which are lack of complete discussion in the research of pseudo-parabolic equations. According to the characteristics of pseudo-parabolic equations, especially to the degeneration and singularity occurring at the high-order term with mixed derivative, there will be essential difficulties in our research, hence we need to find new approaches, frameworks etc

英文关键词: pseudo-parabolic equation;critical exponent;traveling wavelet;periodic solution;

成为VIP会员查看完整内容
0

相关内容

【开放书】《矩阵流形优化算法》,241页pdf
专知会员服务
93+阅读 · 2021年7月3日
专知会员服务
31+阅读 · 2021年2月17日
最新《非凸优化理论》进展书册,79页pdf
专知会员服务
108+阅读 · 2020年12月18日
专知会员服务
73+阅读 · 2020年12月7日
【普林斯顿】机器学习数学视角,63页ppt
专知会员服务
87+阅读 · 2020年11月6日
《常微分方程》笔记,419页pdf
专知会员服务
71+阅读 · 2020年8月2日
【硬核书】不完全信息决策理论,467页pdf
专知会员服务
351+阅读 · 2020年6月24日
【ICLR2020】图神经网络与图像处理,微分方程,27页ppt
专知会员服务
47+阅读 · 2020年6月6日
图神经网络的困境,用微分几何和代数拓扑解决
机器之心
4+阅读 · 2022年3月27日
正则化方法小结
极市平台
2+阅读 · 2021年11月24日
求解稀疏优化问题——半光滑牛顿方法
极市平台
45+阅读 · 2019年11月30日
神经网络常微分方程 (Neural ODEs) 解析
AI科技评论
41+阅读 · 2019年8月9日
你的算法可靠吗? 神经网络不确定性度量
专知
40+阅读 · 2019年4月27日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2022年4月18日
Generalized Out-of-Distribution Detection: A Survey
Arxiv
15+阅读 · 2021年10月21日
Arxiv
19+阅读 · 2021年1月14日
Financial Time Series Representation Learning
Arxiv
10+阅读 · 2020年3月27日
小贴士
相关主题
相关VIP内容
【开放书】《矩阵流形优化算法》,241页pdf
专知会员服务
93+阅读 · 2021年7月3日
专知会员服务
31+阅读 · 2021年2月17日
最新《非凸优化理论》进展书册,79页pdf
专知会员服务
108+阅读 · 2020年12月18日
专知会员服务
73+阅读 · 2020年12月7日
【普林斯顿】机器学习数学视角,63页ppt
专知会员服务
87+阅读 · 2020年11月6日
《常微分方程》笔记,419页pdf
专知会员服务
71+阅读 · 2020年8月2日
【硬核书】不完全信息决策理论,467页pdf
专知会员服务
351+阅读 · 2020年6月24日
【ICLR2020】图神经网络与图像处理,微分方程,27页ppt
专知会员服务
47+阅读 · 2020年6月6日
相关资讯
图神经网络的困境,用微分几何和代数拓扑解决
机器之心
4+阅读 · 2022年3月27日
正则化方法小结
极市平台
2+阅读 · 2021年11月24日
求解稀疏优化问题——半光滑牛顿方法
极市平台
45+阅读 · 2019年11月30日
神经网络常微分方程 (Neural ODEs) 解析
AI科技评论
41+阅读 · 2019年8月9日
你的算法可靠吗? 神经网络不确定性度量
专知
40+阅读 · 2019年4月27日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
微信扫码咨询专知VIP会员