项目名称: G-Levy过程及其在金融中的应用
项目编号: No.11201262
项目类型: 青年科学基金项目
立项/批准年度: 2013
项目学科: 数理科学和化学
项目作者: 胡明尚
作者单位: 山东大学
项目金额: 22万元
中文摘要: G-Levy过程是指非线性期望(即G-期望)下的平稳独立增量过程,目前关于此过程的研究大多考虑不含跳的情形, 即G-布朗运动。然而金融中的许多模型是带跳的,结合金融市场中的实际问题, 本项目旨在研究这一领域中几个重要的问题:首先我们对不含小跳的G-Levy过程定义随机积分,并推广Daniell-Stone技术来得到相应的Ito公式;进一步我们研究由G-Levy过程驱动的随机微分方程解的存在唯一性和生存性条件;接着我们拟构造合理的范数来研究G-Levy过程情形下的G-鞅表示定理;最后我们研究弱独立条件下的中心极限定理,从而建立包含小跳的G-Levy过程的Levy-Ito分解以及Levy-Khintchine公式。我们希望,通过该项目的研究,能得到一系列国际前沿、国内领先的基础理论成果,为G-Levy过程在金融中的应用提供数学工具。
中文关键词: 次线性期望;G-倒向随机微分方程;随机最优控制;G- Levy过程;G-布朗运动
英文摘要: G-Levy processes are processes with independent and stationary increments under nonlinear expectations (i.e. G-expectations), most of the research on this processes only consider the case without jumps, i.e., G-Brownian motion. However, many models in finance contain jumps, combining with the practical problems in the financial market, this project is to study several important problems in this field: First, we define the stochastic integral with respect to G-Levy processes without small jumps, and get the corresponding Ito's formula by generalized Daniell-Stone method; We further study the existence and uniqueness theorem and the viable condition of stochastic differential equations driven by G-Levy processes; then we study the G-martingale representation theorem under G-Levy processes framework by constructing a reasonable norm; Finally, we study the central limit theorem under weak independent condition, and then establish the Levy-Ito decomposition and Levy-Khintchine formula for G-Levy processes which contain small jumps. We hope to get a series of basic resuls through the this project, and to provide the mathematical tools for the applications of G-levy processes in finance.
英文关键词: Sublinear Expectation;G-Backward Stochastic Differential Equation;Stochastic Optimal Control;G-Levy Process;G-Brownian Motion