项目名称: 关于非线性阻尼波方程解的长时间行为的研究
项目编号: No.11526100
项目类型: 专项基金项目
立项/批准年度: 2016
项目学科: 数理科学和化学
项目作者: 孟凤娟
作者单位: 江苏理工学院
项目金额: 3万元
中文摘要: 本项目拟研究非线性阻尼波方程全局吸引子的存在性及其性质等相关问题。首先,克服非线性项满足超临界指数以及阻尼项是非线性函数带来的困难,建立Shatah-Struwe解的适定性以及精细的估计,研究方程全局吸引子的存在性;其次,研究具有Lyapunov泛函的非线性阻尼波方程全局吸引子的性质,利用临界点理论和指标理论,在适当的条件下证明非线性阻尼波方程全局吸引子里多重平衡点的存在性以及分形维数可以是无穷大。本项目的研究对深入认识耗散型波方程吸引子存在性及其几何性质有着重要的理论和现实意义。
中文关键词: 波方程;超临界指数;吸引子;Lyapunov泛函;平衡点
英文摘要: In this project, we will investigate the existence and property of global attractor for wave equation with nonlinear damping. Firstly, we overcome the difficulties brought by the nonlinearity with supercritical exponent and the nonlinear damping term to establish the well-posedness of Shatah-Struwe solution and some delicate estimates, and study the existence of global attractor; secondly, we investigate properties of the global attractor for wave equation with nonlinear damping with Lyapunov functional, using critical point theory and index theory, show that the existence of multiple equilibrium points in global attractor and the fractal dimension of global attractor can be infinite.This project is significant for us to understand deeply the existence and geometry of global attractors for damped wave equation.
英文关键词: wave equation;supercritical exponent;attractor;Lyapunov functional;equilibrium point