This paper studies the problem of risk-averse receding horizon motion planning for agents with uncertain dynamics, in the presence of stochastic, dynamic obstacles. We propose a model predictive control (MPC) scheme that formulates the obstacle avoidance constraint using coherent risk measures. To handle disturbances, or process noise, in the state dynamics, the state constraints are tightened in a risk-aware manner to provide a disturbance feedback policy. We also propose a waypoint following algorithm that uses the proposed MPC scheme for discrete distributions and prove its risk-sensitive recursive feasibility while guaranteeing finite-time task completion. We further investigate some commonly used coherent risk metrics, namely, conditional value-at-risk (CVaR), entropic value-at-risk (EVaR), and g-entropic risk measures, and propose a tractable incorporation within MPC. We illustrate our framework via simulation studies.
翻译:本文研究在存在随机、动态障碍的情况下,对具有不确定动态的代理人进行风险-反退地平线运动规划的问题。我们提出了一个模型预测控制(MPC)计划,利用一致的风险措施制定避免障碍的制约因素。在州动态中,国家制约因素以风险意识方式加强处理干扰或处理噪音,以提供扰动反馈政策。我们还提议了遵循算法的方法,该算法使用拟议的MPC计划进行离散分布,并证明其对风险敏感的循环可行性,同时保证完成有限时间任务。我们进一步调查一些常用的一致风险指标,即有条件值风险(CVaR)、诱变值风险(EVaR)和g硫丹风险措施,并提议在MPC内采用可移动的整合措施。我们通过模拟研究来说明我们的框架。我们通过模拟研究来说明我们的框架。