项目名称: 全基因组关联分析中基因-基因交互网络比较的统计推断方法研究

项目编号: No.31200994

项目类型: 青年科学基金项目

立项/批准年度: 2013

项目学科: 遗传学与生物信息学、细胞生物学

项目作者: 袁中尚

作者单位: 山东大学

项目金额: 20万元

中文摘要: 全基因组关联研究(GWAS)打开了一扇通往研究复杂疾病的大门,但其研究得到的有统计显著性的SNP位点仅仅只能解释疾病的一小部分遗传度,这既有遗传学机制层面的问题,又有数据分析方面的问题,遗传层面上,人类复杂疾病不仅受基因组上的DNA控制,而且还受到RNA等多方面的影响,数据层面上,多是单一SNP分析,部分以整体基因为单位的方法也仅仅考虑两两交互作用,本项目从系统生物学和网络生物学角度,针对病例对照设计,基于GWAS SNP数据,以特定生化通路内整体基因为单位,分别构建在疾病和健康两个不同状态下通路内的基因网络,采用基于偏最小二乘路径模型构建的新型统计量,对这两种状态下网络的拓扑结构进行比较,发现网络中哪些基因的连接存在差异,鉴定那些因条件不同而改变的基因关联,进而揭示疾病产生的内在网络遗传机制,并构建"全基因组关联分析中基因-基因交互网络比较的统计推断方法体系"。

中文关键词: 基因-基因共关联;网络比较;得分检验;通路效应;

英文摘要: Genome-wide association studies have proposed a key to complex disease, though the SNPs variants identified from GWAS explain only a small proportion of heritability. One reason is that the human complex disease can not only be controlled by DNA in human genome, but RNA and some other factors . the other is that most statistical approaches for GWAS is mainly based on single SNP, some gene-based methods only consider the interaction between two genes. From the perspective of system biology and network biology, based on case-control design and GWAS SNP data, this program will construct the genetic network in case and control respectively by treating genes in some specified biochemistry pathway as nodes. A new statistic based on partial least square path modeling will be adopted to compare the topology structure between these two networks, then we can explore the different gene co-association, and illustrate the network genetic mechanism for the disease. Furthermore, the statistical inference methods for comparison between gene-gene network will be constructed .

英文关键词: gene-gene co-association;network comparison;score test;pathway effect;

成为VIP会员查看完整内容
0

相关内容

【干货书】数据挖掘药物发现,347页pdf
专知会员服务
133+阅读 · 2021年9月20日
专知会员服务
48+阅读 · 2021年8月29日
专知会员服务
15+阅读 · 2021年8月6日
最新《图机器学习》综述论文,19页pdf
专知会员服务
150+阅读 · 2021年5月5日
专知会员服务
144+阅读 · 2021年2月3日
最新《时序数据分析》书稿,512页pdf
专知会员服务
112+阅读 · 2020年12月25日
专知会员服务
45+阅读 · 2020年11月13日
【ICML2020】强化学习中基于模型的方法,279页ppt
专知会员服务
45+阅读 · 2020年10月26日
【CIKM2020】神经贝叶斯信息处理,220页ppt,国立交通大学
专知会员服务
34+阅读 · 2020年10月26日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
1+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年4月20日
Arxiv
0+阅读 · 2022年4月17日
Arxiv
0+阅读 · 2022年4月16日
Phase-aware Speech Enhancement with Deep Complex U-Net
A Multi-Objective Deep Reinforcement Learning Framework
小贴士
相关主题
相关VIP内容
【干货书】数据挖掘药物发现,347页pdf
专知会员服务
133+阅读 · 2021年9月20日
专知会员服务
48+阅读 · 2021年8月29日
专知会员服务
15+阅读 · 2021年8月6日
最新《图机器学习》综述论文,19页pdf
专知会员服务
150+阅读 · 2021年5月5日
专知会员服务
144+阅读 · 2021年2月3日
最新《时序数据分析》书稿,512页pdf
专知会员服务
112+阅读 · 2020年12月25日
专知会员服务
45+阅读 · 2020年11月13日
【ICML2020】强化学习中基于模型的方法,279页ppt
专知会员服务
45+阅读 · 2020年10月26日
【CIKM2020】神经贝叶斯信息处理,220页ppt,国立交通大学
专知会员服务
34+阅读 · 2020年10月26日
相关基金
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
1+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
相关论文
微信扫码咨询专知VIP会员