Forensic firearms identification, the determination by a trained firearms examiner as to whether or not bullets or cartridges came from a common weapon, has long been a mainstay in the criminal courts. Reliability of forensic firearms identification has been challenged in the general scientific community, and, in response, several studies have been carried out aimed at showing that firearms examination is accurate, that is, has low error rates. Less studied has been the question of consistency, of. whether two examinations of the same bullets or cartridge cases come to the same conclusion, carried out by an examiner on separate occasions -- intrarater reliability or repeatability -- or by two examiners -- interrater reliability or reproducibility. One important study, described in a 2020 Report by the Ames Laboratory-USDOE to the Federal Bureau of Investigation, went beyond considerations of accuracy to investigate firearms examination repeatability and reproducibility. The Report's conclusions were paradoxical. The observed agreement of examiners with themselves or with other examiners appears mediocre. However, the study concluded repeatability and reproducibility are satisfactory, on grounds that the observed agreement exceeds a quantity called the expected agreement. We find that appropriately employing expected agreement as it was intended does not suggest satisfactory repeatability and reproducibility, but the opposite.


翻译:法医火器鉴定,由受过训练的火器检查官确定子弹或子弹弹壳是否来自普通武器,长期以来一直是刑事法院的支柱,法医火器鉴定的可靠性在一般科学界受到质疑,对此,进行了若干研究,旨在表明火器检查准确性,即误差率低;研究较少的是一致性问题,研究较少的是同一子弹或子弹弹壳案件的两次检查是否得出相同的结论,由检查官在不同场合 -- -- 内部可靠性或可重复性 -- -- 或由两名检查官 -- -- 内部可靠性或可重复性 -- -- 或两个检查官 -- 之间可靠性或可重复性 -- -- 进行;Ames实验室-USMOE向联邦调查局提交的2020年报告中描述的一项重要研究,超越了对火器检查可重复性和可复制性的准确性的考虑;报告的结论自相矛盾;经观察的同一子弹或子弹弹壳体的检查官与自己或其他检查官达成的协议似乎不够一致;然而,结论的可重复性和可复制性是令人满意的,理由是所遵守的协议的数量超过了预期的协议,但我们认为预期的协议是完全相反的。

0
下载
关闭预览

相关内容

CASES:International Conference on Compilers, Architectures, and Synthesis for Embedded Systems。 Explanation:嵌入式系统编译器、体系结构和综合国际会议。 Publisher:ACM。 SIT: http://dblp.uni-trier.de/db/conf/cases/index.html
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Latest News & Announcements of the Industry Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年7月29日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年6月8日
Arxiv
0+阅读 · 2022年6月5日
Arxiv
65+阅读 · 2021年6月18日
VIP会员
相关资讯
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Latest News & Announcements of the Industry Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年7月29日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员