项目名称: 具有非均匀导体和环纽结导线的网络对瞬态电磁源响应的拓扑分析与数值逼近
项目编号: No.11271370
项目类型: 面上项目
立项/批准年度: 2013
项目学科: 数理科学和化学
项目作者: 罗建书
作者单位: 中国人民解放军国防科学技术大学
项目金额: 50万元
中文摘要: 本课题研究具有非均匀导体和环面纽结导线的网络系统对瞬态电磁源响应的拓扑分析与和数值逼近算法。非均匀导体与环面纽结导线对瞬态电磁场的耦合场计算,不能用经典传输线理论处理,也难以单纯用有限元等现代数值方法直接计算。故本课题首先研究孔缝渗漏电磁场的时域积分方程及其数值逼近算法;然后利用非均匀导体或环面纽结导线的参数化表示和Maxwell电磁场理论,导出非均匀导体与环面纽结导线耦合电磁场的混合位势积分方程;再采用全波传输线理论与拓扑分析方法,建立网络终端响应的时域BLT方程;而对时域BLT方程中的混合位势积分方程采用部分元等效电路法和Galerkin方法求出数值逼近解;用配置法与多尺度分析法计算时域BLT方程中对应的传播矩阵与散射矩阵;最后得出时域BLT方程的迭代解。
中文关键词: 拓扑分解;电磁散射;时域BLT方程;混合位势积分方程;多尺度分析
英文摘要: The subject is on topology analyses and numerical approximation algorithms of the electromagnetic responses of inhomogeneous and torus knot conductor lines to the transient electromagnetic sources. The coupled electromagnetic fields of inhomogeneous and torus knot conductor lines to the transient electromagnetic sources can't be handled by the traditional theory of transmission lines, nor be analyzed directly by up-to-date numerical methods such as FEM (Finite Elementary Method). This motivates the research of this subject. Firstly, Mixed potential integral equations (MPIE) of those coupled electromagnetic fields will be developed based on the parametric representations of inhomogeneous and torus knot conductor lines and Maxwell's equations. Then, it is adopted that theory of full-wave transmission lines and the method of topology analyses to build up the time-domain BLT equations (TD-BLT) of network responses. We will solve the MPIE in the TD-BLT with an approximate solution by the method of partial element equivalent circuits (PEEC) and Galerkin method. Collocation method and multiscale analyses will be used to compute the propagation and scattering matrices in the TD-BLT. Finally, an iterated solution of the TD-BLT will be achieved.
英文关键词: Topology decomposition;electromagnetic scattering;BLT equation in time domain;Mixed potetial integnal equation;multiscale analysis