项目名称: 基于上限有限元运动单元法的堆积体边坡非线性失稳机理研究

项目编号: No.51208522

项目类型: 青年科学基金项目

立项/批准年度: 2013

项目学科: 建筑环境与结构工程学科

项目作者: 赵炼恒

作者单位: 中南大学

项目金额: 25万元

中文摘要: 堆积体是艰险山区常见不良地质体,严重威胁着山区交通运输的建设与运营。鉴于现有理论尚不能对具高度非均质、非连续、非线性的复杂堆积材料进行描述和概化,开展复杂条件下堆积体边坡非线性失稳机理的研究对其安全评估和防治具有重要意义且势在必行。本项目通过融合运动单元法和上限有限元法的各自优点,建立起具有网格自适应与速度间断线优化重置特性的上限有限元运动单元法非线性规划数学模型和求解格式;基于系统耗能最小原理,建立复杂堆积体滑坡非线性屈服参数反演分析模型;考虑应变局部化,进行复杂条件(任意边界、岩土分层、材料非线性屈服特性等)下堆积体边坡稳定性计算与参数分析,获得堆积体破坏模式和内部耗散能分布,界定岩土承载的关键部位与力学薄弱区域,进而阐明堆积体非线性失稳机理的发生与扩展规律。同时采用室内外试验和数值模拟进行对比校证,最后开展工程应用研究。本项目研究可为复杂堆积体边坡安全评估和防护加固提供重要技术支撑。

中文关键词: 堆积体边坡;非线性失稳机理;破坏模式;非线性规划;上限有限元运动单元法

英文摘要: The accumulation body, a common adverse geological body in dangerous mountain areas, poses a serious threat to the construction and operation of transport in mountain areas. Since the existing theories cannot describe and generalize the characteristics of accumulation body with high heterogeneity, discontinuity, non-linearity, it is important and imperative to study the nonlinear instability mechanism of accumulation slope for its safety assessment and dispensarization under complex conditions. In this research project, by integrating the respective merits of the kinematical element method and the finite limit element upper method, the nonlinear programming mathematical model and solving format of the finite limit element upper method with adaptive grid and reset velocity discontinuity line is established. Parameter inversion analysis model of nonlinear yield strength of accumulation slope under complex conditions is established based on the system minimum energy consumption principle. The failure modes and internal dissipation of energy distribution in accumulation body is obtained and the distinction between the key parts of support part and mechanical weak regions is also clarified after strain localization being taken into account and the implementation of stability calculation and parametric analysis of acc

英文关键词: accumulation slope;nonlinear instability mechanism;failure pattern;nonlinear programming;upper bound finite kinematical element method

成为VIP会员查看完整内容
0

相关内容

【AI+军事】附PPT 《前瞻性分析:获得决策优势的方法》
专知会员服务
90+阅读 · 2022年4月17日
类脑超大规模深度神经网络系统
专知会员服务
54+阅读 · 2022年1月21日
深度学习激活函数全面综述论文
专知会员服务
70+阅读 · 2021年10月1日
专知会员服务
32+阅读 · 2021年7月27日
专知会员服务
36+阅读 · 2021年7月17日
《常微分方程》笔记,419页pdf
专知会员服务
71+阅读 · 2020年8月2日
【TPAMI2022】关联关系驱动的多模态分类
专知
3+阅读 · 2022年3月22日
2022入坑图像分割,我该从哪儿入手?
CVer
2+阅读 · 2022年2月24日
大白话深度学习中的Sigmoid函数
极市平台
1+阅读 · 2021年10月28日
用狄拉克函数来构造非光滑函数的光滑近似
PaperWeekly
0+阅读 · 2021年10月23日
交通评价指标概略
智能交通技术
15+阅读 · 2019年7月21日
带你读论文 | 生成对抗网络GAN论文TOP 10
微软研究院AI头条
24+阅读 · 2019年4月11日
【工业智能】风机齿轮箱故障诊断 — 基于振动信号
一种轻量级在线多目标车辆跟踪方法
极市平台
13+阅读 · 2018年8月18日
最大熵原理(一)
深度学习探索
12+阅读 · 2017年8月3日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Risk-Averse Receding Horizon Motion Planning
Arxiv
1+阅读 · 2022年4月20日
Arxiv
0+阅读 · 2022年4月20日
Arxiv
0+阅读 · 2022年4月19日
RIS-Assisted Cooperative NOMA with SWIPT
Arxiv
0+阅读 · 2022年4月18日
Arxiv
13+阅读 · 2021年6月14日
小贴士
相关主题
相关VIP内容
【AI+军事】附PPT 《前瞻性分析:获得决策优势的方法》
专知会员服务
90+阅读 · 2022年4月17日
类脑超大规模深度神经网络系统
专知会员服务
54+阅读 · 2022年1月21日
深度学习激活函数全面综述论文
专知会员服务
70+阅读 · 2021年10月1日
专知会员服务
32+阅读 · 2021年7月27日
专知会员服务
36+阅读 · 2021年7月17日
《常微分方程》笔记,419页pdf
专知会员服务
71+阅读 · 2020年8月2日
相关资讯
【TPAMI2022】关联关系驱动的多模态分类
专知
3+阅读 · 2022年3月22日
2022入坑图像分割,我该从哪儿入手?
CVer
2+阅读 · 2022年2月24日
大白话深度学习中的Sigmoid函数
极市平台
1+阅读 · 2021年10月28日
用狄拉克函数来构造非光滑函数的光滑近似
PaperWeekly
0+阅读 · 2021年10月23日
交通评价指标概略
智能交通技术
15+阅读 · 2019年7月21日
带你读论文 | 生成对抗网络GAN论文TOP 10
微软研究院AI头条
24+阅读 · 2019年4月11日
【工业智能】风机齿轮箱故障诊断 — 基于振动信号
一种轻量级在线多目标车辆跟踪方法
极市平台
13+阅读 · 2018年8月18日
最大熵原理(一)
深度学习探索
12+阅读 · 2017年8月3日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
微信扫码咨询专知VIP会员