项目名称: 量子场论中的两类变分问题
项目编号: No.U1504102
项目类型: 联合基金项目
立项/批准年度: 2016
项目学科: 数理科学和化学
项目作者: 高志锋
作者单位: 河南大学
项目金额: 27万元
中文摘要: 本项目拟研究两类来自量子场论中的带有混合项的变分问题。一类产生于弱电统一理论的Higgs模型,是关于弱电双荷子(electroweak dyon)的作用量泛函的不定变分问题;另一类是研究涡旋(vortex)在有电或磁杂质存在情况下能量泛函的变分问题。前一类问题的作用量泛函既有正项又有负项,泛函下无界使得不存在极小值点,需要通过处理,借助变分法找到泛函满足指定边界条件的鞍点解,再证明该解与方程解的等价性,同时研究解的性质。后一类问题的能量泛函是正定的,通过变分方法研究刻画含杂质的涡旋的动力学的极小能量解,并研究解的性质。这两类问题有一个共同的难点是泛函中带有关于未知函数的混合项,这将给变分法带来困难。主要表现在两方面:一是在构造约束条件克服泛函下无界时很难得到强制不等式,二是实现边界条件时由于混合项的存在而很难得到未知函数的单调性。
中文关键词: 变分原理;临界点理论;涡旋;双荷子;渐近行为
英文摘要: In this project, two classes of variational problems arising in field theory will be studied in the presence of mixed terms. One of them originates from the Higgs model of electroweak unification theory. The action functional of the electroweak dyon is indefinite. The other is a variational problem about the energy functional of vortices and impurities. For the first problem, we will find the saddle points meeting the boundary conditions via calculus of variations since the terms in the action functional have different sign, which leads to the nonexistence of the minimal points. Then we will show that the saddle points just solve the equations. In addition, we will study the property of the solutions. For the second problem, the energy functional is positive definite and the minimum energy solution will be found via variational methods. The same difficulty in both problems is the appearance of mixed terms in the functional. This will cause some obstacles when we construct the coercive inequality or try to get the monotonicity of the unknown functions.
英文关键词: variational principle;critical point theory;vortex;dyon;asymptotic behavior