项目名称: 幂零Lie群上次椭圆偏微分方程组的正则性研究
项目编号: No.11201081
项目类型: 青年科学基金项目
立项/批准年度: 2013
项目学科: 数理科学和化学
项目作者: 王家林
作者单位: 赣南师范学院
项目金额: 23万元
中文摘要: 本项目研究的非线性次椭圆方程组来源于次Riemann几何、量子物理以及流体力学等领域。次椭圆方程组弱解的正则性是偏微分方程研究的热点之一。本项目重点关注幂零Lie群上的次椭圆方程组,研究其弱解的最优部分正则性,得到最优H?lder指标和最佳奇异集。 为了克服向量场的非交换性带来的困难,我们采用如下思想:把次椭圆方程组弱解的正则性与幂零Lie群上的调和逼近方法联系起来,通过建立和应用幂零Lie群上的调和逼近理论,得到弱解的最优H?lder连续性。 调和逼近理论方面,分别研究超二次和次二次增长条件下的A-调和逼近引理,把欧氏空间的调和逼近理论发展到非交换幂零Lie群上。 最优部分正则性方面,利用调和逼近方法取代经典的直接法,分别研究具Dini连续和具VMO不连续系数的次椭圆方程组,建立其弱解的最优H?lder连续性,揭示幂零Lie群上的次椭圆方程组弱解的正则性与调和逼近理论的联系。
中文关键词: 幂零 Lie 群;次椭圆偏微分方程组;A-调和逼近方法;正则性;
英文摘要: The nonlinear sub-elliptic systems considered in this project comes from sub-Riemann geometry, quantum physics and fluid mechanics, etc. Regularity of weak solutions to sub-elliptic systems is one of the focus in the study of PDE. This project is concerned with optimal partial regularity of weak solutions to the sub-elliptic systems on nilpotent Lie groups, and obtain the optimal H?lder exponent and the sharp singular set. In order to overcome the difficulty due to the non-commutativity of vector fields, the idea here is as follows: To connect the regularity of weak solutions to sub-elliptic systems with the harmonic approximation method on the nilpotent Lie groups. That is to say, one obtains the optimal H?lder continuity of the weak solutions by establishing and applying the harmonic approximation theory on the nilpotent Lie groups. With regard to the harmonic approximation theory, we will study several A-harmonic approximation lemmas under super-quadratic growth conditions and sub-quadratic growth conditions, respectively, which generalizes the harmonic approximation theory on the Euclidean space to the case of non-commutative nilpotent Lie groups. As for the optimal partial regularity, by using harmonic approximation methods instead of the classical direct method, we will study the sub-elliptic systems wit
英文关键词: Nilpotent Lie group;sub-elliptic systems;A-harmonic approximation method;regularity;