项目名称: 基于能量特性的柔性并联精密定位平台抑振控制研究

项目编号: No.51305444

项目类型: 青年科学基金项目

立项/批准年度: 2014

项目学科: 机械、仪表工业

项目作者: 杨雪锋

作者单位: 中国矿业大学

项目金额: 25万元

中文摘要: 本项目以柔性并联精密定位平台为研究对象,以提高定位平台的运动和控制精度为目标,基于振动能量控制的观点,开展精密定位平台振动特性和振动主动控制方法的研究。根据定位平台的结构形式,分别建立柔性子结构和刚体子结构的动力学模型,在明确结构之间耦合关系的基础上,联立获得柔性精密定位平台的整体动力学模型;利用结构导纳理论和激振实验研究柔性杆件中能量的传递特性,结合结构有限元输出应变云图和能量云图,得出应变分布模型和能量分布模型,分析能量分布与结构应变和结构储能变化率之间的关系;以振动能量最小的优化目标,对传感器和作动器的位置和数量进行优化配置,对定位平台的耦合动力学模型进行离散化修正并建立结构与系统控制的统一模型,考虑平台的运动及控制特性,采用LQR最优控制理论对定位平台进行抑振控制研究。研究成果可为含柔性构件的精密系统设计、开发及应用提供理论支持和借鉴。

中文关键词: 精密定位平台;柔性机构;并联机构;能量特性;振动主动控制

英文摘要: The major objective of this research is to improve the kinematic and control precision of the precision compliant parallel positioner. The primary content of the subject are the vibration and active vibration control of precision compliant parallel positioner according to the viewpoint of vibrational energy control. Firstly, the kinetic models of the flexible sub-structure and the rigid sub-structure were established respectively according to the structure of positioning platform. And then the overall kinetic model of the platform was obtained under the structure coupling relationship. Secondly, the energy distribution in compliant components is described by the structure mobility method and excitation experiment. Then the strain nephogram energy nephogram were depicted combine with structural finite element model. The relationship of energy distribution, structural strain and the rate of structure energy storage change could be derived from the energy distribution model. Finally, the energy minimum was assigned as the optimizing objective in the optimization of sensors/actuators number and location. After the coupling dynamics model of platform was discretized and modified, the unified model of structure and system control was established. The active vibration control of precision compliant parallel positioner

英文关键词: precision positioner;compliant mechanisms;parallel mechanisms;energy characteristics;active vibration control

成为VIP会员查看完整内容
0

相关内容

信息物理融合系统 (CPS)研究综述
专知会员服务
46+阅读 · 2022年3月14日
工业人工智能驱动的流程工业智能制造
专知会员服务
102+阅读 · 2022年3月9日
Kyoto大学Toshiyuki:快速复杂控制系统的实时优化,133页ppt
专知会员服务
38+阅读 · 2021年5月9日
专知会员服务
43+阅读 · 2021年2月8日
专知会员服务
35+阅读 · 2020年11月26日
你觉得搭载屏下摄像头有多加分?
ZEALER订阅号
1+阅读 · 2022年3月12日
综述 | 激光与视觉融合SLAM
计算机视觉life
18+阅读 · 2020年10月8日
【APC】先进过程控制系统(APC: Advanced Process Control)
产业智能官
62+阅读 · 2020年7月12日
平台积分体系设计方案
PMCAFF
31+阅读 · 2018年11月17日
李克强:智能车辆运动控制研究综述
厚势
21+阅读 · 2017年10月17日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
33+阅读 · 2021年12月31日
Arxiv
14+阅读 · 2020年10月26日
Self-Attention Graph Pooling
Arxiv
13+阅读 · 2019年6月13日
Arxiv
30+阅读 · 2019年3月13日
小贴士
相关VIP内容
信息物理融合系统 (CPS)研究综述
专知会员服务
46+阅读 · 2022年3月14日
工业人工智能驱动的流程工业智能制造
专知会员服务
102+阅读 · 2022年3月9日
Kyoto大学Toshiyuki:快速复杂控制系统的实时优化,133页ppt
专知会员服务
38+阅读 · 2021年5月9日
专知会员服务
43+阅读 · 2021年2月8日
专知会员服务
35+阅读 · 2020年11月26日
相关资讯
相关基金
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
微信扫码咨询专知VIP会员