HDR is an important part of computational photography technology. In this paper, we propose a lightweight neural network called Efficient Attention-and-alignment-guided Progressive Network (EAPNet) for the challenge NTIRE 2022 HDR Track 1 and Track 2. We introduce a multi-dimensional lightweight encoding module to extract features. Besides, we propose Progressive Dilated U-shape Block (PDUB) that can be a progressive plug-and-play module for dynamically tuning MAccs and PSNR. Finally, we use fast and low-power feature-align module to deal with misalignment problem in place of the time-consuming Deformable Convolutional Network (DCN). The experiments show that our method achieves about 20 times compression on MAccs with better mu-PSNR and PSNR compared to the state-of-the-art method. We got the second place of both two tracks during the testing phase. Figure1. shows the visualized result of NTIRE 2022 HDR challenge.
翻译:人类发展报告是计算摄影技术的一个重要部分。 在本文中,我们建议建立一个名为 " 高效关注和调整引导进步网络(EAPNet) " 的轻质神经网络,以迎接NTIRE 2022 HHR轨道1和2轨挑战。我们引入了一个多维轻量编码模块,以提取特征。此外,我们提出“进步过滤Ushape Broke (PDUB) ” (PDUB), 它可以成为动态调控MAccs和PSNR的渐进插座和游戏模块。最后,我们用快速和低功率的特质匹配模块来处理不匹配问题,以取代耗时的变形变形网络(DCN ) 。实验显示,我们的方法在MAcc上实现了大约20倍的压缩,与最先进的方法相比,Mu-PSNR和PSNR。我们在测试阶段获得了两个轨道的第二位。图1显示了NTIRE 2022 HHR挑战的可视化结果。