导语
(1)预测用户是否需要相关文章的拓展阅读;
(2)基于用户刚刚阅读的种子文章,实时推荐相关的文章。在看一看系统中,这些模型推荐的相关文章被组织在一个相关box(relevant box)中,并实时插入在上一次点击的文章后面,显式地给用户强烈认知。
(1)它在基本的CTR等点击指标外,也需要额外考虑和种子文章的相关性以及信息增益;
(2)相关box的实时插入,也会导致在种子文章之后的本来可能曝光给用户的文章没有曝光。当用户并不想要拓展阅读时,这种实时插入的延迟成本(delay cost)会干扰用户,影响整体推荐效果。
一、模型背景与简介
(1)相关推荐需要联合考虑多种因素,包括CTR导向的特征交互、种子文章和相关文章的语义相关性和信息增益等。由于不同用户对于不同因素的优先级不同,个性化考虑多因素变得困难。
(2)这种显式实时的相关box插入带来了额外的机会成本。在点击的种子文章之下的本来能曝光给用户的文章,可能会由于这种实时插入导致延迟甚至最终无法曝光(例如图1左侧的猫和attention的文章,在相关box插入后被挤到了更下方)。这种延迟成本(delay cost)在相关推荐模型中也需要考虑,从而使得相关box的实时插入对于整体效果影响尽可能小。
1、我们提出一种新的相关推荐recommendation suggestion任务,采用了相关推荐文章实时插入的产品形态,实现了推荐中的拓展阅读功能。
2、我们设计了一种R3S框架,包含文章推荐和Box触发两个模块。我们设计了神经网络表征种子文章和相关文章之间的语义相关性和信息增益的特征,也提出一种M3oE模型,使用不同评论家综合考虑不同专家信息。
3、离线和线上实验中的显著提升证明了R3S模型的有效性。消融实验也证明了模型各个模块的有效性。
4、我们已经将R3S框架部署于微信看一看线上系统,服务千万用户。模型的实用性得到了验证。
二、模型结构
种子文章(seed):表示当前用户点击阅读过的文章。
相关文章(relevant item):相关文章指的是和种子文章语义相关的文章,通常是共享相同的主题或实体。这些文章是相关推荐的候选集。
相关box(relevant box):相关文章被组织在相关box中(参考图1右屏)。当用户完成种子文章阅读时,如果R3S系统判断应该进行相关推荐,相关box会实时插入在主推荐流的种子文章之下。
延迟成本(delay cost):相关box实时插入时会导致原推荐流中种子文章之下的文章曝光延迟或者无法曝光。这种曝光损失被称为延迟成本。
三、实验结果
四、总结
微信AI
不描摹技术的酷炫,不依赖拟人的形态,微信AI是什么?是悄无声息却无处不在,是用技术创造更高效率,是更懂你。
微信AI关注语音识别与合成、自然语言处理、计算机视觉、工业级推荐系统等领域,成果对内应用于微信翻译、微信视频号、微信看一看等业务,对外服务王者荣耀、QQ音乐等产品。