We investigate optimal execution problems with instantaneous price impact and stochastic resilience. First, in the setting of linear price impact function we derive a closed-form recursion for the optimal strategy, generalizing previous results with deterministic transient price impact. Second, we develop a numerical algorithm for the case of nonlinear price impact. We utilize an actor-critic framework that constructs two neural-network surrogates for the value function and the feedback control. One advantage of such functional approximators is the ability to do parametric learning, i.e. to incorporate some of the model parameters as part of the input space. Precise calibration of price impact, resilience, etc., is known to be extremely challenging and hence it is critical to understand sensitivity of the strategy to these parameters. Our parametric neural network (NN) learner organically scales across 3-6 input dimensions and is shown to accurately approximate optimal strategy across a range of parameter configurations. We provide a fully reproducible Jupyter Notebook with our NN implementation, which is of independent pedagogical interest, demonstrating the ease of use of NN surrogates in (parametric) stochastic control problems.
翻译:首先,在确定线性价格影响功能时,我们为最佳战略进行封闭式重现,对以前的结果进行概括,具有决定性的短暂价格影响;其次,我们为非线性价格影响的情况制定数字算法;我们利用一个行为者-批评框架,为价值功能和反馈控制建立两个神经网络代谢器;这种功能近似器的一个优点是能够进行准数学习,即将一些模型参数纳入作为输入空间的一部分。据知,价格影响、弹性等的精确校准极具挑战性,因此,了解战略对这些参数的敏感性至关重要。我们的准神经网络(NN)在3至6个输入维度上进行有机学习,并显示精确地估计一系列参数配置的最佳战略。我们提供完全可回收的Jupyter Notebook,与我们的NNM实施具有独立的教学兴趣,表明在控制中容易使用NW(准测算器问题)。