项目名称: 基于用户检索行为和搜索任务情境的个性化信息检索系统研究

项目编号: No.71303015

项目类型: 青年科学基金项目

立项/批准年度: 2014

项目学科: 管理科学

项目作者: 刘畅

作者单位: 北京大学

项目金额: 20万元

中文摘要: 目前信息检索系统对使用相同检索式的所有用户提供统一的检索结果,但是不同用户在使用相同检索式的时候可能会有不同的信息需求,希望得到的检索结果也不同。决定用户信息需求的因素很多,比如时间、地点、搜索任务的类型、用户对搜索任务的知识储备以及当前搜索任务的完成阶段等。我们研究表明在搜索任务类型对用户信息需求差异、检索行为的影响很大,并且有一些用户检索行为可以帮助推测当前搜索任务类型,而且进而预测用户感兴趣的文档。但是如何将用户检索行为应用在信息检索系统中,通过对用户检索行为推测当前搜索任务情境,并根据当前情境提供搜索结果的优化还是有待解决的课题,也是本项目的研究目标。我们拟通过用户实验,构建基于用户检索行为的搜索任务情境(如搜索任务类型)的推测模型,并预测当前情境下用户感兴趣的搜索结果,提供个性化检索结果。此研究将用户检索行为研究和信息检索系统研究结合,将为个性化检索系统的构建提供新思路。

中文关键词: 交互式信息检索;个性化信息检索;用户搜索行为;时间情境;情境预测

英文摘要: This project addresses a general problem with current information retrieval systems: that they treat all searchers who submit the same query to the system as if they were one and the same person. However, different people may have different information needs and expect different search results. There are many factors that could affect users' information need, such as time; location; the goal or task that led them to search; the searcher's knowledge of the task and the topic;or the stage in task completion that the searcher is in and so on. Our research has demonstrated that search context, especially search task type, could influence users' information need and how people search. In addition, we found users' search interactions could help infer the current search types and help predict the useful documents for users under current search context. However, how to implement users' interactions into the design of information retrieval systems, how to infer users' search context, and then provide personalized search results according to the search context is still an unsolved problem. The current project is proposed to conduct user experiment, develop predictive models of search task context (such as search task type) based on users' interactions, and predictive models of useful documents so that to provide personali

英文关键词: Interactive information retrieval;Personalization of information retrieval;user search interaction;time context;context prediction

成为VIP会员查看完整内容
1

相关内容

WSDM'22「京东」个性化会话推荐:异构全局图神经网络
专知会员服务
23+阅读 · 2022年1月7日
专知会员服务
17+阅读 · 2021年9月18日
专知会员服务
17+阅读 · 2021年8月25日
专知会员服务
16+阅读 · 2021年8月13日
专知会员服务
20+阅读 · 2021年3月12日
【CIKM2020】学习个性化网络搜索会话
专知会员服务
15+阅读 · 2020年9月20日
个性化推荐系统技术进展
专知会员服务
66+阅读 · 2020年8月15日
【WWW2020-微软】理解用户行为用于文档推荐
专知会员服务
36+阅读 · 2020年4月5日
万物皆可Graph | 当信息检索遇上图神经网络
图与推荐
1+阅读 · 2022年2月17日
个性化商品搜索相关研究梳理
机器学习与推荐算法
0+阅读 · 2022年2月17日
WSDM2022 | 跨领域推荐中的个性化迁移用户兴趣偏好
机器学习与推荐算法
1+阅读 · 2021年11月3日
多样性文本生成任务的研究进展
专知
2+阅读 · 2021年4月25日
【论文笔记】基于强化学习的句子摘要排序
论文浅尝 | 基于知识库的自然语言理解 01#
开放知识图谱
15+阅读 · 2019年2月22日
【知识图谱】基于知识图谱的用户画像技术
产业智能官
102+阅读 · 2019年1月9日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
4+阅读 · 2013年12月31日
国家自然科学基金
2+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
3+阅读 · 2013年12月31日
国家自然科学基金
4+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
27+阅读 · 2021年2月17日
Arxiv
14+阅读 · 2018年4月18日
小贴士
相关VIP内容
WSDM'22「京东」个性化会话推荐:异构全局图神经网络
专知会员服务
23+阅读 · 2022年1月7日
专知会员服务
17+阅读 · 2021年9月18日
专知会员服务
17+阅读 · 2021年8月25日
专知会员服务
16+阅读 · 2021年8月13日
专知会员服务
20+阅读 · 2021年3月12日
【CIKM2020】学习个性化网络搜索会话
专知会员服务
15+阅读 · 2020年9月20日
个性化推荐系统技术进展
专知会员服务
66+阅读 · 2020年8月15日
【WWW2020-微软】理解用户行为用于文档推荐
专知会员服务
36+阅读 · 2020年4月5日
相关资讯
万物皆可Graph | 当信息检索遇上图神经网络
图与推荐
1+阅读 · 2022年2月17日
个性化商品搜索相关研究梳理
机器学习与推荐算法
0+阅读 · 2022年2月17日
WSDM2022 | 跨领域推荐中的个性化迁移用户兴趣偏好
机器学习与推荐算法
1+阅读 · 2021年11月3日
多样性文本生成任务的研究进展
专知
2+阅读 · 2021年4月25日
【论文笔记】基于强化学习的句子摘要排序
论文浅尝 | 基于知识库的自然语言理解 01#
开放知识图谱
15+阅读 · 2019年2月22日
【知识图谱】基于知识图谱的用户画像技术
产业智能官
102+阅读 · 2019年1月9日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
4+阅读 · 2013年12月31日
国家自然科学基金
2+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
3+阅读 · 2013年12月31日
国家自然科学基金
4+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
微信扫码咨询专知VIP会员