推荐系统阅读清单:最近我们在读哪些论文?

2019 年 5 月 15 日 PaperWeekly



在碎片化阅读充斥眼球的时代,越来越少的人会去关注每篇论文背后的探索和思考。


在这个栏目里,你会快速 get 每篇精选论文的亮点和痛点,时刻紧跟 AI 前沿成果。


点击本文底部的「阅读原文」即刻加入社区,查看更多最新论文推荐。

这是 PaperDaily 的第 133  篇文章


@daven88 推荐

#Deep Learning

最近两年,基于深度学习的推荐系统一直是非常火热的研究方向,然而随着论文数量的增多,对比和复现他人论文成了困扰科研人员的一个难题。本文提出了一个全新开源工具库,包含诸多基于深度学习的推荐算法,代码可以直接运行,可以用来做为 baselines 和开发自己的算法,是一个非常不错的工具。

 论文模型:点击查看大图



论文链接

https://www.paperweekly.site/papers/2979


源码链接

https://github.com/cheungdaven/DeepRec



@shoujin 推荐

#Session-based Recommendation

本文是第一篇全面深入总结 session-based recommendations 的综述文章,值得推荐。文章系统总结了目前一种新型推荐范式:session-based recommendations 的特点、挑战和目前取得的进展,对整个推荐系统研究领域和相关的工业界人员提供了一个全面了解推荐系统领域最新研究进展的机会。

该文从问题本质和相关的数据特征入手,为 session-based recommendations 建立了一个层次化模型来深入理解里面存在的各种数据复杂性和潜在挑战,然后采用了两个不同维度对现有研究成果进行了系统分类和总结,最后提出了展望。

 论文模型:点击查看大图



论文链接

https://www.paperweekly.site/papers/2884


@ZSCDumin 推荐

#Reinforcement Learning

本文是清华大学和京东发表于 KDD 2019 的工作。论文针对利用强化学习解决推荐系统时存在用户行为难以建模的问题,提出了一种新的强化学习框架 FeedRec,包括两个网络:Q 网络利用层次化 LSTM 对复杂用户行为建模,S 网络用来模拟环境,辅助和稳定 Q 网络的训练。方法在合成数据和真实数据上进行了验证,取得了 SOTA 的结果。

 论文模型:点击查看大图



论文链接

https://www.paperweekly.site/papers/2995



@paperweekly 推荐

#Recomendation

本文是 UCSD 和微软发表于 CIKM 2018 的工作。与在线购物不同的是,在超市购物场景下,商品间的互补性和用户对商品的忠诚度起着决定性作用。本文基于这两个维度提出了一种新的表示学习方法——triple2vec。此外,作者在上述方法得到的表示基础上,提出了一种考虑忠诚度的推荐算法,用忠诚系数来权衡表示模型和统计模型计算出的购买偏好。

 论文模型:点击查看大图



论文链接

https://www.paperweekly.site/papers/2516


源码链接

https://github.com/MengtingWan/grocery




@ZSCDumin 推荐

#Group Recommendation

本文是湖南大学和新加坡国立大学发表于 SIGIR 2018 的工作,论文应用神经协同网络和注意力机制为群组用户进行 Top-N 商品推荐,主要解决了群组用户兴趣的动态组合、群组与个人用户的协同商品推荐,以及新用户的冷启动问题。

 论文模型:点击查看大图



论文链接

https://www.paperweekly.site/papers/2732


源码链接

https://github.com/LianHaiMiao/Attentive-Group-Recommendation





@paperweekly 推荐

#Collaborative Filtering

本文是 Netflix、MIT 和 Google AI 发表于 WWW 2018 的工作,论文将变分自编码器(VAE)扩展到协同过滤以进行隐式反馈,通过非线性概率模型克服线性因子模型的局限。其次,作者引入了具有多项式似然(multinomial likelihood)的生成模型,并使用贝叶斯推断进行参数估计。作者基于 VAE 提出了一个生成模型 VAE_CF,并针对 VAE 的正则参数和概率模型选取做了适当调整,使其在当前推荐任务中取得最佳结果。

 论文模型:点击查看大图



论文链接

https://www.paperweekly.site/papers/2606


源码链接

https://github.com/dawenl/vae_cf




@paperweekly 推荐

#Recommender Systems

本文是中科院和亚利桑那州立大学发表于 AAAI 2018 的工作。现有的推荐系统大多依靠用户的历史评分或者评论文本进行推荐,往往由于数据资源不足而面临数据稀疏和难以进行冷启动的问题。本文基于原则性和数学的方式,对用户评论中的积极/消极情感加以充分利用,提出了一个全新推荐框架 MIRROR,并且在 Ciao 和 Epinions 这两个真实数据集上证明了该框架的有效性。

 论文模型:点击查看大图



论文链接

https://www.paperweekly.site/papers/2550




@paperweekly 推荐

#Context-aware Recommendations

本文是山东大学发表于 CIKM 2018 的工作,论文关注的问题是基于上下文感知的推荐系统。作者提出了一种新型注意力交互网络,用来捕捉内容、user和item之间的交互影响。此外,作者还提出了一种效应级注意力机制来聚合多种交互影响。通过在三个公开数据集 Food、Yelp 和 Frappe 上的大量实验表明,本文模型效果优于当前最先进的上下文感知推荐算法。

 论文模型:点击查看大图



论文链接

https://www.paperweekly.site/papers/2501




@paperweekly 推荐

#Matrix Factorization

本文是伍斯特理工学院和宾夕法尼亚州立大学发表于 CIKM 2018 的工作,论文提出了一个基于 RME(Regularized Multi-Embedding)的推荐模型,不再基于用户的共同喜好进行物品推荐,而是创新地提出刻画物品对共同被讨厌的特征,进而避免向用户推荐其讨厌的物品。

 论文模型:点击查看大图



论文链接

https://www.paperweekly.site/papers/2446


源码链接

https://github.com/thanhdtran/RME




@paperweekly 推荐

#Multi-Task Learning

本文是上海交大和弗吉尼亚大学发表于 SIGIR 2018 的工作。论文提出了一个用于可解释推荐任务的多任务学习方法,通过联合张量分解将用户、产品、特征和观点短语映射到同一表示空间。

 论文模型:点击查看大图



论文链接

https://www.paperweekly.site/papers/2421


源码链接

https://github.com/MyTHWN/MTER



点击以下标题查看往期推荐: 





#投 稿 通 道#

 让你的论文被更多人看到 



如何才能让更多的优质内容以更短路径到达读者群体,缩短读者寻找优质内容的成本呢? 答案就是:你不认识的人。


总有一些你不认识的人,知道你想知道的东西。PaperWeekly 或许可以成为一座桥梁,促使不同背景、不同方向的学者和学术灵感相互碰撞,迸发出更多的可能性。 


PaperWeekly 鼓励高校实验室或个人,在我们的平台上分享各类优质内容,可以是最新论文解读,也可以是学习心得技术干货。我们的目的只有一个,让知识真正流动起来。


📝 来稿标准:

• 稿件确系个人原创作品,来稿需注明作者个人信息(姓名+学校/工作单位+学历/职位+研究方向) 

• 如果文章并非首发,请在投稿时提醒并附上所有已发布链接 

• PaperWeekly 默认每篇文章都是首发,均会添加“原创”标志


📬 投稿邮箱:

• 投稿邮箱:hr@paperweekly.site 

• 所有文章配图,请单独在附件中发送 

• 请留下即时联系方式(微信或手机),以便我们在编辑发布时和作者沟通




🔍


现在,在「知乎」也能找到我们了

进入知乎首页搜索「PaperWeekly」

点击「关注」订阅我们的专栏吧



关于PaperWeekly


PaperWeekly 是一个推荐、解读、讨论、报道人工智能前沿论文成果的学术平台。如果你研究或从事 AI 领域,欢迎在公众号后台点击「交流群」,小助手将把你带入 PaperWeekly 的交流群里。


▽ 点击 | 阅读原文 | 获取更多论文推荐

登录查看更多
24

相关内容

推荐系统,是指根据用户的习惯、偏好或兴趣,从不断到来的大规模信息中识别满足用户兴趣的信息的过程。推荐推荐任务中的信息往往称为物品(Item)。根据具体应用背景的不同,这些物品可以是新闻、电影、音乐、广告、商品等各种对象。推荐系统利用电子商务网站向客户提供商品信息和建议,帮助用户决定应该购买什么产品,模拟销售人员帮助客户完成购买过程。个性化推荐是根据用户的兴趣特点和购买行为,向用户推荐用户感兴趣的信息和商品。随着电子商务规模的不断扩大,商品个数和种类快速增长,顾客需要花费大量的时间才能找到自己想买的商品。这种浏览大量无关的信息和产品过程无疑会使淹没在信息过载问题中的消费者不断流失。为了解决这些问题,个性化推荐系统应运而生。个性化推荐系统是建立在海量数据挖掘基础上的一种高级商务智能平台,以帮助电子商务网站为其顾客购物提供完全个性化的决策支持和信息服务。

知识荟萃

精品入门和进阶教程、论文和代码整理等

更多

查看相关VIP内容、论文、资讯等
基于深度学习的多标签生成研究进展
专知会员服务
142+阅读 · 2020年4月25日
【综述】金融领域中的深度学习,附52页论文下载
专知会员服务
163+阅读 · 2020年2月27日
【综述】自动驾驶领域中的强化学习,附18页论文下载
专知会员服务
172+阅读 · 2020年2月8日
专知会员服务
87+阅读 · 2020年1月20日
【推荐系统/计算广告/机器学习/CTR预估资料汇总】
专知会员服务
87+阅读 · 2019年10月21日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
52+阅读 · 2019年9月29日
深度学习在推荐系统中的应用及论文小结
专知
14+阅读 · 2019年7月8日
近期我们在读的那些优质论文,你不了解下?
PaperWeekly
8+阅读 · 2019年4月18日
本周值得读的15篇AI论文,还有源码搭配服用
中国人工智能学会
3+阅读 · 2019年3月26日
近期必读的12篇「推荐系统」相关论文
PaperWeekly
33+阅读 · 2019年3月7日
本周NLP、CV、机器学习论文精选推荐
PaperWeekly
8+阅读 · 2018年12月21日
近期AI领域8篇精选论文(附论文、代码)
数据派THU
4+阅读 · 2018年3月24日
CoCoNet: A Collaborative Convolutional Network
Arxiv
6+阅读 · 2019年1月28日
Next Item Recommendation with Self-Attention
Arxiv
5+阅读 · 2018年8月25日
Arxiv
6+阅读 · 2018年5月18日
Arxiv
14+阅读 · 2018年4月18日
Arxiv
4+阅读 · 2017年10月30日
VIP会员
相关资讯
深度学习在推荐系统中的应用及论文小结
专知
14+阅读 · 2019年7月8日
近期我们在读的那些优质论文,你不了解下?
PaperWeekly
8+阅读 · 2019年4月18日
本周值得读的15篇AI论文,还有源码搭配服用
中国人工智能学会
3+阅读 · 2019年3月26日
近期必读的12篇「推荐系统」相关论文
PaperWeekly
33+阅读 · 2019年3月7日
本周NLP、CV、机器学习论文精选推荐
PaperWeekly
8+阅读 · 2018年12月21日
近期AI领域8篇精选论文(附论文、代码)
数据派THU
4+阅读 · 2018年3月24日
Top
微信扫码咨询专知VIP会员