近期必读的12篇「推荐系统」相关论文

2019 年 3 月 7 日 PaperWeekly



在碎片化阅读充斥眼球的时代,越来越少的人会去关注每篇论文背后的探索和思考。


在这个栏目里,你会快速 get 每篇精选论文的亮点和痛点,时刻紧跟 AI 前沿成果。


点击本文底部的「阅读原文」即刻加入社区,查看更多最新论文推荐。

这是 PaperDaily 的第 131  篇文章


@paperweekly 推荐

#Knowledge Graph

本文是新加坡国立大学和 eBay 发表于 AAAI 2019 的工作,论文提出了一种基于 RNN 的推荐模型,对用户和物品之间的交互特征在知识图谱中存在的关联路径进行建模,为用户提供可解释性推荐。该模型基于 LSTM 学习关联路径的表示,充分考虑了实体、关系间产生的序列依赖性,具备较强的推理能力。实验表明,本文模型在电影数据集 MI 音乐数据集 KKBox 上取得了当前最优结果。

 论文模型:点击查看大图



论文链接

https://www.paperweekly.site/papers/2644


源码链接

https://github.com/eBay/KPRN




@ZSCDumin 推荐

#Knowledge Graph

本文是新加坡国立大学发表于 WWW 2019 的工作,论文提出了一个基于翻译的推荐模型利用共同学习推荐系统和知识图谱补全模型,提供推荐的解释性。作者结合了知识图谱一起训练,推理用户偏好。

 论文模型:点击查看大图



论文链接

https://www.paperweekly.site/papers/2866


源码链接

https://github.com/TaoMiner/joint-kg-recommender


@paperweekly 推荐

#Explainable Recommendation

本文是新加坡国立大学发表于 WWW 2018 的工作。在推荐系统任务上,基于 embedding 的方法虽然具有良好的推荐表现,但其整体仿若一个黑盒,难以解释具体推荐原因。相反,基于决策树的推荐方法则能够从数据中进行规则推理,进而给出具体的决策原因。

本文的写作动机便是将二者的优势加以结合,提出一个全新的 Tree-enhanced Embedding 方法,既保持基于决策树方法的可解释性,又具备基于 embedding 方法的良好推荐效果,进而保证了整个推荐过程的透明、可解释性。

 论文模型:点击查看大图



论文链接

https://www.paperweekly.site/papers/2548



@wwwangzhch 推荐

#Memory Networks

本文是北京大学、IBM 与佐治亚理工发表在 AAAI 2019 上的论文,作者将电子病历数据(Electronic Health Records, EHR)与药物相互反应数据(Drug-Drug Interaction, DDI)通过图卷积网络转换成 Memory Bank,并结合病人的历史病历记录生成 Dynamic Memory,动态调整损失函数以使得系统在较高精确度与较低 DDI rate 之间权衡。

在 MIMIC-III 数据集上使用雅卡尔相似系数、Average Precision、Average Recall 等多种评价指标均取得了最高的推荐准确率与极底的 DDI rate(仅次于逻辑回归)。

 论文模型:点击查看大图



论文链接

https://www.paperweekly.site/papers/2651


源码链接

https://github.com/sjy1203/GAMENet





@paperweekly 推荐

#Session-based Recommendation

本文是加州大学圣地亚哥分校发表于 CIKM 2018 的工作,论文借助混合专家模型(mixtures-of-experts)和知识图谱 embeddings 的思想提出了一种全新框架,巧妙利用用户序列行为中相邻物品间的关系来解释用户在特定时间点的行为原因,进而基于用户的近期行为对其下一次行为进行预测。

 论文模型:点击查看大图



论文链接

https://www.paperweekly.site/papers/2458


源码链接

https://github.com/kang205/MoHR





@paperweekly 推荐

#Deep Neural Network

本文是 Schibsted Media Group 发表于 RecSys 2018 的工作,论文关注的问题是推荐系统在二手市场上的应用。作者通过在线实验对三种基于深度神经网络的推荐模型进行了基准测试,对比它们在生产环境中的性能表现。这三种模型分别为混合项目-项目推荐器、基于序列的用户项目推荐器以及一种更高级的多臂 bandit 算法。

结果表明,在冷启动和基于序列的模型中,将协同过滤和内容特性相结合可以更好地表示项目。此外,作者还在其他推荐算法的基础上,将bandit作为更高级的再排序工具,这种方法对于利用上下文信息和组合多个业务领域的推荐系统非常有用。

 论文模型:点击查看大图



论文链接

https://www.paperweekly.site/papers/2646




@paperweekly 推荐

#Social Recommendation

本文是重庆大学、亚利桑那州立大学和昆士兰大学发表于 CIKM 2018 的工作。论文提出了一种基于潜在好友关系和购买关系构建异质信息网络的方法,针对不同用户,采用动态采样方式生成用户的潜在好友。实验表明,本文方法在 Last.fm、豆瓣和 Epinions 数据集上,均达到了当前最优效果。

 论文模型:点击查看大图



论文链接

https://www.paperweekly.site/papers/2469


源码链接

https://github.com/Coder-Yu/RecQ





@paperweekly 推荐

#Next-item Recommendation

本文是中科大发表于 SIGKDD 2018 的工作。现有的序列化推荐方法往往仅对消费者的短期行为特征进行分析,没有充分考虑到用户的长期偏好以及偏好的动态变化过程。

本文基于用户行为区别,提出了一个针对商品推荐任务的全新BINN(Behavior-Intensive Neural Network)模型,该模型包括一个 Item Embedding 和两个 RNN。Item Embedding 对用户产生的 item 序列运用类 Skip-gram 的模型,两个 RNN 分别用于捕获用户当前偏好和历史偏好。

 论文模型:点击查看大图



论文链接

https://www.paperweekly.site/papers/2414





@paperweekly 推荐

#Rating Prediction

本文是新加坡国立大学发表于 IJCAI 2018 的工作,论文基于评论文本对用户偏好和商品特征进行抽取,提出了一种自适应注意力模型用于用户评论的智能排序,不断学习用户对商品在不同关注点方面的权重,进而提升推荐效果。

本文解决了已有方法忽视不同用户对商品不同侧面关注点不同的缺陷,并且在 Amazon Product Review 和 Yelp 2017 这两个大规模推荐系统数据库上取得了领域内最好效果。

 论文模型:点击查看大图



论文链接

https://www.paperweekly.site/papers/2560


源码链接

https://github.com/hustlingchen/A3NCF





@paperweekly 推荐

#Recommender System

本文是明尼苏达大学和京东发表于 WSDM 2018 的工作。当前大多数推荐系统更注重用户和商品之间的宏观交互(如用户-商品评分矩阵),很少有人会结合用户的微观行为数据(如浏览商品的时长、对商品的阅读和评论)进行推荐。

本文从微观行为的角度对推荐系统进行改进,作者将用户的固有数据视为用户和商品之间的宏观交互,并保留了宏观交互的顺序信息,同时,每个宏观交互都包含一系列微观行为。

具体来说,论文提出了一个全新模型—RIB,它由输入层、Embedding 层(解决数据稀疏和数据高维的问题)、RNN 层(建模时序信息)、Attention 层(捕捉各种微观行为影响)和输出层组成。

 论文模型:点击查看大图



论文链接

https://www.paperweekly.site/papers/2549




@ZSCDumin 推荐

#Group Recommendation

本文来自南洋理工大学。作为个体的用户和群组成员的行为是不同的,作者基于用户评级历史的深度学习技术,提出了一个注意力群体推荐模型来解决群体推荐问题,模型自动学习群组中的每个用户的影响权重并根据其成员的权重偏好为群组推荐项目。虽然基于图和概率的模型已经得到了广泛的研究,但本文是第一个将 Attention 机制应用到群体推荐中的

 论文模型:点击查看大图



论文链接

https://www.paperweekly.site/papers/2561



@paperweekly 推荐

#Heterogeneous Information Networks

本文是北京大学发表于 WSDM 2018 的工作。基于异构信息网络(HIN)的推荐由于其在模拟协同过滤、内容过滤、上下文感知推荐等方面的能力而受到广泛关注。现有各类方法的关键在于如何正确设置异构信息网络中各种 link 的权重。

本文提出了一种基于贝叶斯个性化排序(BPR)的机器学习方法——HeteLearn,来学习异构信息网络中的 link 权重,并将其应用于个性化推荐任务。作者在个性化推荐和标签推荐任务上对本文方法进行了测试,实验表明,本文方法表现明显优于传统的协同过滤推荐算法和当前最先进的基于 HIN 的推荐方法。

 论文模型:点击查看大图



论文链接

https://www.paperweekly.site/papers/2413



点击以下标题查看往期推荐: 




#投 稿 通 道#

 让你的论文被更多人看到 



如何才能让更多的优质内容以更短路径到达读者群体,缩短读者寻找优质内容的成本呢? 答案就是:你不认识的人。


总有一些你不认识的人,知道你想知道的东西。PaperWeekly 或许可以成为一座桥梁,促使不同背景、不同方向的学者和学术灵感相互碰撞,迸发出更多的可能性。 


PaperWeekly 鼓励高校实验室或个人,在我们的平台上分享各类优质内容,可以是最新论文解读,也可以是学习心得技术干货。我们的目的只有一个,让知识真正流动起来。


📝 来稿标准:

• 稿件确系个人原创作品,来稿需注明作者个人信息(姓名+学校/工作单位+学历/职位+研究方向) 

• 如果文章并非首发,请在投稿时提醒并附上所有已发布链接 

• PaperWeekly 默认每篇文章都是首发,均会添加“原创”标志


📬 投稿邮箱:

• 投稿邮箱:hr@paperweekly.site 

• 所有文章配图,请单独在附件中发送 

• 请留下即时联系方式(微信或手机),以便我们在编辑发布时和作者沟通




🔍


现在,在「知乎」也能找到我们了

进入知乎首页搜索「PaperWeekly」

点击「关注」订阅我们的专栏吧



关于PaperWeekly


PaperWeekly 是一个推荐、解读、讨论、报道人工智能前沿论文成果的学术平台。如果你研究或从事 AI 领域,欢迎在公众号后台点击「交流群」,小助手将把你带入 PaperWeekly 的交流群里。


▽ 点击 | 阅读原文 | 获取更多论文推荐

登录查看更多
33

相关内容

推荐系统,是指根据用户的习惯、偏好或兴趣,从不断到来的大规模信息中识别满足用户兴趣的信息的过程。推荐推荐任务中的信息往往称为物品(Item)。根据具体应用背景的不同,这些物品可以是新闻、电影、音乐、广告、商品等各种对象。推荐系统利用电子商务网站向客户提供商品信息和建议,帮助用户决定应该购买什么产品,模拟销售人员帮助客户完成购买过程。个性化推荐是根据用户的兴趣特点和购买行为,向用户推荐用户感兴趣的信息和商品。随着电子商务规模的不断扩大,商品个数和种类快速增长,顾客需要花费大量的时间才能找到自己想买的商品。这种浏览大量无关的信息和产品过程无疑会使淹没在信息过载问题中的消费者不断流失。为了解决这些问题,个性化推荐系统应运而生。个性化推荐系统是建立在海量数据挖掘基础上的一种高级商务智能平台,以帮助电子商务网站为其顾客购物提供完全个性化的决策支持和信息服务。

知识荟萃

精品入门和进阶教程、论文和代码整理等

更多

查看相关VIP内容、论文、资讯等
近期必读的五篇KDD 2020【图神经网络 (GNN) 】相关论文_Part2
专知会员服务
160+阅读 · 2020年6月30日
近期必读的5篇顶会WWW2020【推荐系统】相关论文-Part2
专知会员服务
69+阅读 · 2020年4月7日
近期必读的5篇AI顶会CVPR 2020 GNN (图神经网络) 相关论文
专知会员服务
78+阅读 · 2020年3月3日
近期必读的6篇AI顶会WWW2020【推荐系统】相关论文
专知会员服务
56+阅读 · 2020年2月25日
专知会员服务
87+阅读 · 2020年1月20日
近期必读的5篇 WSDM 2020【图神经网络(GNN)】相关论文
专知会员服务
56+阅读 · 2020年1月10日
必读的7篇 IJCAI 2019【图神经网络(GNN)】相关论文
专知会员服务
91+阅读 · 2020年1月10日
@即将开学的你,请收好这份必读论文清单
PaperWeekly
4+阅读 · 2019年8月19日
推荐系统阅读清单:最近我们在读哪些论文?
PaperWeekly
24+阅读 · 2019年5月15日
近期我们在读的那些优质论文,你不了解下?
PaperWeekly
8+阅读 · 2019年4月18日
本周NLP、CV、机器学习论文精选推荐
PaperWeekly
8+阅读 · 2018年12月21日
近期AI领域8篇精选论文(附论文、代码)
数据派THU
4+阅读 · 2018年3月24日
Arxiv
20+阅读 · 2019年11月23日
A Comprehensive Survey on Transfer Learning
Arxiv
121+阅读 · 2019年11月7日
Arxiv
8+阅读 · 2019年5月20日
CoCoNet: A Collaborative Convolutional Network
Arxiv
6+阅读 · 2019年1月28日
Next Item Recommendation with Self-Attention
Arxiv
5+阅读 · 2018年8月25日
VIP会员
相关VIP内容
近期必读的五篇KDD 2020【图神经网络 (GNN) 】相关论文_Part2
专知会员服务
160+阅读 · 2020年6月30日
近期必读的5篇顶会WWW2020【推荐系统】相关论文-Part2
专知会员服务
69+阅读 · 2020年4月7日
近期必读的5篇AI顶会CVPR 2020 GNN (图神经网络) 相关论文
专知会员服务
78+阅读 · 2020年3月3日
近期必读的6篇AI顶会WWW2020【推荐系统】相关论文
专知会员服务
56+阅读 · 2020年2月25日
专知会员服务
87+阅读 · 2020年1月20日
近期必读的5篇 WSDM 2020【图神经网络(GNN)】相关论文
专知会员服务
56+阅读 · 2020年1月10日
必读的7篇 IJCAI 2019【图神经网络(GNN)】相关论文
专知会员服务
91+阅读 · 2020年1月10日
相关论文
Arxiv
20+阅读 · 2019年11月23日
A Comprehensive Survey on Transfer Learning
Arxiv
121+阅读 · 2019年11月7日
Arxiv
8+阅读 · 2019年5月20日
CoCoNet: A Collaborative Convolutional Network
Arxiv
6+阅读 · 2019年1月28日
Next Item Recommendation with Self-Attention
Arxiv
5+阅读 · 2018年8月25日
Top
微信扫码咨询专知VIP会员