论文题目:USER: A Unified Information Search and Recommendation Model based on Integrated Behavior Sequence
作者:姚菁,窦志成,谢若冰,路彦雄,王志平,文继荣
通讯作者:窦志成
论文概述:搜索和推荐是用户获取信息最常用的两种方式,两个任务的目标都是满足用户的信息需求。目前,很多网络平台和移动App同时提供了搜索和推荐服务,为同时解决这两个任务提出了需求也提供了机会。然而,现有的大部分平台仍然使用独立的搜索模型和推荐模型来提供两种服务,没有利用两个任务之间的依赖和关联。在这篇文章中,我们提出“对两个任务联合建模有助于提升两个任务以及用户的综合满意度”。我们首先将用户的搜索行为和推荐中的浏览行为整合成一个异质性的行为序列,然后我们用一个联合模型(USER)从这个整合的行为序列中挖掘用户兴趣来同时解决两个任务。我们提出的联合模型具有几个优势:(1) 合并了搜索和推荐日志可以缓解数据稀疏性的问题;(2) 基于整合的行为序列,我们可以获得更准确的用户画像;(3) 我们可以捕捉两个任务间潜在的关联来促进两个任务。我们利用真实网络平台上的数据进行了实验,结果证明我们的联合模型优于独立的搜索模型和推荐模型。
http://playbigdata.ruc.edu.cn/dou/publication/2021_CIKM_USER.pdf