Cricket shot classification from video sequences remains a challenging problem in sports video analysis, requiring effective modeling of both spatial and temporal features. This paper presents the first comprehensive baseline study comparing seven different deep learning approaches across four distinct research paradigms for cricket shot classification. We implement and systematically evaluate traditional CNN-LSTM architectures, attention-based models, vision transformers, transfer learning approaches, and modern EfficientNet-GRU combinations on a unified benchmark. A critical finding of our study is the significant performance gap between claims in academic literature and practical implementation results. While previous papers reported accuracies of 96\% (Balaji LRCN), 99.2\% (IJERCSE), and 93\% (Sensors), our standardized re-implementations achieve 46.0\%, 55.6\%, and 57.7\% respectively. Our modern SOTA approach, combining EfficientNet-B0 with a GRU-based temporal model, achieves 92.25\% accuracy, demonstrating that substantial improvements are possible with modern architectures and systematic optimization. All implementations follow modern MLOps practices with PyTorch Lightning, providing a reproducible research platform that exposes the critical importance of standardized evaluation protocols in sports video analysis research.
翻译:暂无翻译