Deep neural network approaches to inverse imaging problems have produced impressive results in the last few years. In this paper, we consider the use of generative models in a variational regularisation approach to inverse problems. The considered regularisers penalise images that are far from the range of a generative model that has learned to produce images similar to a training dataset. We name this family \textit{generative regularisers}. The success of generative regularisers depends on the quality of the generative model and so we propose a set of desired criteria to assess models and guide future research. In our numerical experiments, we evaluate three common generative models, autoencoders, variational autoencoders and generative adversarial networks, against our desired criteria. We also test three different generative regularisers on the inverse problems of deblurring, deconvolution, and tomography. We show that the success of solutions restricted to lie exactly in the range of the generator is highly dependent on the ability of the generative model but that allowing small deviations from the range of the generator produces more consistent results.
翻译:在过去几年里,对反成像问题的深神经网络方法产生了令人印象深刻的结果。 在本文中,我们考虑使用基因模型,对反问题采取变异的正规化方法。 被考虑的正规化剂惩罚的图像远远超出学会制作与培训数据集相似的图像的基因模型的范围。 我们命名这个家族。 基因化正规化剂的成功取决于基因模型的质量,因此我们提出一套评估模型和指导未来研究的预期标准。 在我们的数字实验中,我们对照我们所期望的标准,评估三种常见的基因模型、自动变异器、变异自动变异器和基因对抗网络。 我们还测试了三种不同的基因正规化剂,研究脱泡、变异和图象的反常问题。我们发现,限于完全处于发电机范围的解决方案的成功在很大程度上取决于基因化模型的能力,但允许与发电机范围的小变异产生更一致的结果。