Neural operators have recently grown in popularity as Partial Differential Equation (PDEs) surrogate models. Learning solution functionals, rather than functions, has proven to be a powerful approach to calculate fast, accurate solutions to complex PDEs. While much work has been done evaluating neural operator performance on a wide variety of surrogate modeling tasks, these works normally evaluate performance on a single equation at a time. In this work, we develop a novel contrastive pretraining framework utilizing Generalized Contrastive Loss that improves neural operator generalization across multiple governing equations simultaneously. Governing equation coefficients are used to measure ground-truth similarity between systems. A combination of physics-informed system evolution and latent-space model output are anchored to input data and used in our distance function. We find that physics-informed contrastive pretraining improves both accuracy and generalization for the Fourier Neural Operator in fixed-future task, with comparable performance on the autoregressive rollout, and superresolution tasks for the 1D Heat, Burgers', and linear advection equations.
翻译:暂无翻译