Foundation models have revolutionized the landscape of Deep Learning (DL), serving as a versatile platform which can be adapted to a wide range of downstream tasks. Despite their adaptability, applications of foundation models to downstream graph-based tasks have been limited, and there remains no convenient way to leverage large-scale non-graph pretrained models in graph-structured settings. In this work, we present a new framework which we term Foundation-Informed Message Passing (FIMP) to bridge the fields of foundational models and GNNs through a simple concept: constructing message-passing operators from pretrained foundation model weights. We show that this approach results in improved performance for graph-based tasks in a number of data domains, allowing graph neural networks to leverage the knowledge of foundation models.
翻译:暂无翻译