In this paper a global reactive motion planning framework for robotic manipulators in complex dynamic environments is presented. In particular, the circular field predictions (CFP) planner from Becker et al. (2021) is extended to ensure obstacle avoidance of the whole structure of a robotic manipulator. Towards this end, a motion planning framework is developed that leverages global information about promising avoidance directions from arbitrary configuration space motion planners, resulting in improved global trajectories while reactively avoiding dynamic obstacles and decreasing the required computational power. The resulting motion planning framework is tested in multiple simulations with complex and dynamic obstacles and demonstrates great potential compared to existing motion planning approaches.
翻译:本文介绍了在复杂动态环境中对机器人操纵者进行全球反应性运动规划的框架,特别是Becker等人(2021年)的循环实地预测(CFP)规划员的扩展,以确保避免机器人操纵者整个结构的障碍。为此,制定了一个运动规划框架,利用关于任意配置空间运动规划人员有希望的避免方向的全球信息,从而改进全球轨道,同时被动地避免动态障碍,减少所需的计算能力。由此产生的运动规划框架在多重模拟中进行测试,并带有复杂和动态的障碍,与现有的运动规划方法相比具有巨大的潜力。