Autonomous vehicles that operate in urban environments shall comply with existing rules and reason about the interactions with other decision-making agents. In this paper, we introduce a decentralized and communication-free interaction-aware motion planner and apply it to Autonomous Surface Vessels (ASVs) in urban canals. We build upon a sampling-based method, namely Model Predictive Path Integral control (MPPI), and employ it to, in each time instance, compute both a collision-free trajectory for the vehicle and a prediction of other agents' trajectories, thus modeling interactions. To improve the method's efficiency in multi-agent scenarios, we introduce a two-stage sample evaluation strategy and define an appropriate cost function to achieve rule compliance. We evaluate this decentralized approach in simulations with multiple vessels in real scenarios extracted from Amsterdam's canals, showing superior performance than a state-of-the-art trajectory optimization framework and robustness when encountering different types of agents.
翻译:在城市环境中运作的自治车辆应遵守关于与其他决策人员互动的现有规则和理由。在本文件中,我们引入了一种分散的、无通信的互动意识运动规划器,并将其应用于城市运河中的自动表面船只(ASVs)。我们以基于取样的方法为基础,即模型预测路径综合控制(MPPI),并使用这种方法,在每次计算车辆不碰撞轨迹和预测其他代理人的轨迹,从而进行模拟。为了提高多试剂情景中的方法效率,我们引入了两阶段抽样评估战略,并界定了适当的成本功能,以实现遵守规则。我们用从阿姆斯特丹运河抽取的多种船只进行模拟时评估这种分散做法,其表现优于最先进的轨迹优化框架和遇到不同类型代理人时的稳健性。