Inspired by the unique neurophysiology of the octopus, we propose a hierarchical framework that simplifies the coordination of multiple soft arms by decomposing control into high-level decision making, low-level motor activation, and local reflexive behaviors via sensory feedback. When evaluated in the illustrative problem of a model octopus foraging for food, this hierarchical decomposition results in significant improvements relative to end-to-end methods. Performance is achieved through a mixed-modes approach, whereby qualitatively different tasks are addressed via complementary control schemes. Here, model-free reinforcement learning is employed for high-level decision-making, while model-based energy shaping takes care of arm-level motor execution. To render the pairing computationally tenable, a novel neural-network energy shaping (NN-ES) controller is developed, achieving accurate motions with time-to-solutions 200 times faster than previous attempts. Our hierarchical framework is then successfully deployed in increasingly challenging foraging scenarios, including an arena littered with obstacles in 3D space, demonstrating the viability of our approach.
翻译:在章鱼独特的神经生理学的启发下,我们提出一个分级框架,通过将控制分解成高层决策、低级别的电动激活和通过感官反馈的当地反反应行为,简化多种软臂的协调。当在模型章鱼饲料用于食品的示范性问题中进行评估时,这种分级分解导致与端对端方法相比的显著改进。通过混合模式方法取得了绩效,通过互补控制计划处理质量不同的任务。在这里,为高层决策采用了不使用模型的强化学习方法,而基于模型的能源形成则照顾到手臂的发动机执行。为了使配对制具有计算性,将开发一个新的神经网络能量成型(NN-ES)控制器(NN-ES)的配对,比以前的尝试速度快200倍,实现与时间对端溶的精确运动。然后,我们的分级框架被成功地运用于日益具有挑战性的套期情景,包括一个在3D空间设置障碍的舞台,展示了我们的方法的可行性。