Global localization is essential for robots to perform further tasks like navigation. In this paper, we propose a new framework to perform global localization based on a filter-based visual-inertial odometry framework MSCKF. To reduce the computation and memory consumption, we only maintain the keyframe poses of the map and employ Schmidt-EKF to update the state. This global localization framework is shown to be able to maintain the consistency of the state estimator. Furthermore, we introduce a re-linearization mechanism during the updating phase. This mechanism could ease the linearization error of observation function to make the state estimation more precise. The experiments show that this mechanism is crucial for large and challenging scenes. Simulations and experiments demonstrate the effectiveness and consistency of our global localization framework.
翻译:本地化对于机器人执行导航等进一步任务至关重要。 在本文中, 我们提出一个新的框架, 以基于过滤的视觉- 内皮odorization 框架MSKF 为基础, 实施全球本地化。 为了减少计算和记忆消耗, 我们只能保持地图的关键框架配置, 并使用Schmidt- EKF 来更新国家。 这个全球本地化框架显示能够保持国家测量器的一致性 。 此外, 在更新阶段, 我们引入了重新线性化机制 。 这个机制可以减轻观测功能的线性错误, 使国家估算更加精确。 实验显示这个机制对于大型且具有挑战性的场景至关重要 。 模拟和实验显示了我们全球本地化框架的有效性和一致性 。