To segment a signal into blocks to be analyzed, few-shot keyword spotting (KWS) systems often utilize a sliding window of fixed size. Because of the varying lengths of different keywords or their spoken instances, choosing the right window size is a problem: A window should be long enough to contain all necessary information needed to recognize a keyword but a longer window may contain irrelevant information such as multiple words or noise and thus makes it difficult to reliably detect on- and offsets of keywords. We propose TACos, a novel angular margin loss for deriving two-dimensional embeddings that retain temporal properties of the underlying speech signal. In experiments conducted on KWS-DailyTalk, a few-shot KWS dataset presented in this work, using these embeddings as templates for dynamic time warping is shown to outperform using other representations or a sliding window and that using time-reversed segments of the keywords during training improves the performance.
翻译:暂无翻译